• 제목/요약/키워드: Runge-Kutta Integration Method

검색결과 93건 처리시간 0.026초

Clothoid 완화곡선을 갖는 양단회전 곡선보의 자유진동 (Free Vibrations of Double Hinged Curved Beams with Clothoid Transition Segment)

  • 이병구;진태기;최규문;김선기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.391-397
    • /
    • 2001
  • This paper explores the free vibrations of double hinged curved beams with transition segment. In this study, the clothoid curve is chosen as the transition segment of beams. The differential equations governing free vibration of such beams are derived in which the effects of rotatory inertia and shear deformation are included. The Runge-Kutta method and Determinant Search method are used to perform the integration of differential equations and to compute natural frequencies, respectively. In numerical examples, the double hinged end constraint is considered. The lowest four natural frequencies are presented as functions of three non-dimensional system parameters: the slenderness ratio, shear parameter and stiffness parameter.

  • PDF

이동질량에 의한 탄성 지지된 보의 동적응답 실험 (Experiments on Dynamic Response of an Elastically Restrained Beam under a Moving Mass)

  • 이종원;류봉조;이규섭;김효준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.275-280
    • /
    • 2003
  • This paper discusses on the dynamic responsed of an elastically restrained beam under a moving mass of constant velocity. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. Numerical solutions for dynamic deflections of beams were obtained for the changes of the various parameters (spring stiffness, spring position, mass ratios and velocity ratios of the moving mass). In order to verify the numerical predictions for the dynamic response of the beam, experiments were conducted. Numerical solutions for the dynamic responses of the test beam have a good agreement with experimental ones.

  • PDF

비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석 (Finite volume method for incompressible flows with unstructured triangular grids)

  • 김종태;김용모
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.

자동볼평형장치가 부착된 광디스크 드라이브의 동특성해석 (Dynamic Analysis of an Optical Disk Drive with an Automatic Ball Balancer)

  • 김강성;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.983-988
    • /
    • 2001
  • Dynamic behaviors and stability of an optical disk drive coupled with an automatic ball balancer(ABB) are analyzed by a theoretical approach. The feeding system is modeled a rigid body with six degree-of-freedom. Using Lagrange's equation, we derive the nonlinear equations of motion for a non-autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of the equilibrium positions, the monodromy matrix technique is applied to the perturbed equations. On the other hand, time responses are computed by the Runge-Kutta method. We also investigate the effects of the damping coefficient and the position of ABB on the dynamic behaviors of the system.

  • PDF

가속을 갖는 이동질량에 의한 외팔보의 동적응답에 관한 실험적 검증 (Experimental Verification on Dynamic Responses of a Cantilevered Beam under a Moving Mass with Accelerations)

  • 김희중;류봉조;김효준;윤충섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.307-310
    • /
    • 2004
  • The paper presents the numerical and experimental results for the dynamic response vibration of a cantilevered beam subjected to a moving mass with variable speeds. Governing equations of motion under a moving mass were derived by Galerkin's mode summation method taking into account the effects of all forces due to moving mass, and the numerical results were calculated by Runge-Kutta integration method. The effects of the speed, acceleration and the magnitude of the moving mass on the response of the beam are fully investigated. In order to verify numerical results, some experiments were conducted, and the numerical results have a little difference with the experimental ones.

  • PDF

Mass-Spring-Damper Model for Offline Handwritten Character Distortion Analysis

  • Cho, Beom-Joon
    • 한국멀티미디어학회논문지
    • /
    • 제14권5호
    • /
    • pp.642-649
    • /
    • 2011
  • Among the various aspects of offline handwritten character patterns, it is the great variety of writing styles and variations that renders the task of computer recognition very hard. The immense variety of character shape has been recognized but rarely studied during the past decades of numerous research efforts. This paper tries to address the problem of measuring image distortions and handwritten character patterns with respect to reference patterns. This work is based on mass-spring mesh model with the introduction of simulated electric charge as a source of the external force that can aid decoding the shape distortion. Given an input image and a reference image, the charge is defined, and then the relaxation procedure goes to find the optimum configuration of shape or patterns of least potential. The relaxation process is based on the fourth order Runge-Kutta algorithm, well-known for numerical integration. The proposed method of modeling is rigorous mathematically and leads to interesting results. Additional feature of the method is the global affine transformation that helps analyzing distortion and finding a good match by removing a large scale linear disparity between two images.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

IRK vs Structural Integrators for Real-Time Applications in MBS

  • Dopico D.;Lugris U.;Gonzalez M.;Cuadrado J.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.388-394
    • /
    • 2005
  • Recently, the authors have developed a method for real-time dynamics of multibody systems, which combines a semi-recursive formulation to derive the equations of motion in dependent relative coordinates, along with an augmented Lagrangian technique to impose the loop closure conditions. The following numerical integration procedures, which can be grouped into the so-called structural integrators, were tested : trapezoidal rule, Newmark dissipative schemes, HHT rule, and the Generalized-${\alpha}$ family. It was shown that, for large multi body systems, Newmark dissipative was the best election since, provided that the adequate parameters were chosen, excellent behavior was achieved in terms of efficiency and robustness with acceptable levels of accuracy. In the present paper, the performance of the described method in combination with another group of integrators, the Implicit Runge-Kutta family (IRK), is analyzed. The purpose is to clarify which kind of IRK algorithms can be more suitable for real-time applications, and to see whether they can be competitive with the already tested structural family of integrators. The final objective of the work is to provide some practical criteria for those interested in achieving real-time performance for large and complex multibody systems.

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

EHPS용 압력 평형형 베인 펌프의 압축 과정에 관한 연구 (A Study on the Compression Process of Balanced Type Vane Pump for Electro-Hydraulic Power Steering)

  • 조명래;한동철;장주섭;박민호;이충호
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.215-222
    • /
    • 1996
  • This paper reports on theoretical study of the compression process within balanced type vane pump for Electro-Hydraulic Power Steering(EHPS). Equations fo camring profiles are derived, then displacements, velocities, accelerations, and jerks are calculated. Vane side leakages, vane slit leakages, and rotor side leakages are considered and calculated. Numerical integration of flow equation is performed using 4th Runge-Kutta method. As a result of analysis, it is found that chamber pressure depends on rotational speeds, bulk modulus of fluid, notches, camring profiles, and positions of delivery port. Especially, the variation of notch area is the most important factor that prevents pressure from rapid rising.

  • PDF