• 제목/요약/키워드: Runge Kutta Method

검색결과 502건 처리시간 0.022초

저 Mach 수 흐름에서 차분격자볼츠만법에 의한 유동소음의 직접계산 (Direct Simulation of Flow Noise by the Lattice Boltzmann Method Based on Finite Difference for Low Mach Number Flow)

  • 강호근;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.804-809
    • /
    • 2003
  • In this study, 2D computations of the Aeolian tones for some obstacles (circular cylinder, square cylinder and NACA0012 airfoil) are simulated. First of all, we calculate the flow noise generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuation with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. To investigate the effect of the lattice dependence, furthermore, simulations of the Aeolian tones at the low Reynolds number radiated by a square cylinder and a NACA0012 airfoil with a blunt trailing edge at high incidence are also investigated.

  • PDF

Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.295-303
    • /
    • 2018
  • The semi-analytical method to study the nonlinear dynamic behavior of simply supported spiral stiffened functionally graded (FG) cylindrical shells subjected to an axial compression is presented. The FG shell is surrounded by damping and linear/nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation (Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear model. The material properties of the shell and stiffeners are assumed to be FG. Based on the classical plate theory of shells and von $K{\acute{a}}rm{\acute{a}}n$ nonlinear equations, smeared stiffeners technique and Galerkin method, this paper solves the nonlinear vibration problem. The fourth order Runge-Kutta method is used to find the nonlinear dynamic responses. Results are given to consider effects of spiral stiffeners with various angles, elastic foundation and damping coefficients on the nonlinear dynamic response of spiral stiffened simply supported FG cylindrical shells.

천연가스배관내 피그흐름의 동적모델링 (Dynamic Modeling of PIG Flow in Natural Gas Pipelines)

  • 김상봉;쿠엔탄티엔;유휘룡;노용우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.241-246
    • /
    • 2001
  • This paper introduces modeling and solution for the dynamics of pipeline inspection gauge (PIG) flow in natural gas pipeline. Without of bypass flow, the dynamic behavior of the PIG depends on the different pressure between the rear and nose parts, which is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. With bypass flow, the PIG dynamics also depends on the amount of bypass flow across its body. The mathematical model are derived for unsteady compressible flow of the PIG driving and expelled gas, and for dynamics of the PIG. The bypass flow is assumed to be incompressible with the condition of its Mach number smaller than 0.45. The method of characteristic (MOC) and the Runge-Kutta method are used to solve the system governing equations. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show that the derived mathematical model and the proposed solution are effective for estimation the dynamics of the PIG with and without bypass flow under given operational condition.

  • PDF

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

임의선형을 갖는 아치의 자유진동 (Free Vibration of Arbitrary Shaped Arches)

  • 이태은;신성철;이병구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.526-529
    • /
    • 2004
  • Arches are one of the most important basic structural units as well as the beams, columns and plates. Most complicated structures consist of only these basic units and therefore it is very attractive research subject to analysis both the static and dynamic behavior of such units including the arches. This study deals with the free vibration of arbitrary shaped arches. In order to obtain the exactly arch shape, which surveyed (x, y) of neutral axis of arbitrary shaped arches are compared to various shape of arch: circular, parabolic, sinusoidal, elliptic, spiral and cartenary. The differential equations governing free vibrations of arches are merely adopted in the open literature rather than deriving the equations in this study. The Taylor series method is used as the numerical differential scheme. The Runge-Kutta method and the Regula-Falsi method, respectively, are used to integrate the governing differential equations and to compute the natural frequencies It is expected that results obtained herein can be practically utilized in the fields of vibration control.

  • PDF

구조물의 탄성을 고려한 2차원 탱크내 유동해석 (Analysis of Liquid Sloshing in a Two-Dimensional Elastic Tank)

  • 이판묵;홍석원;홍사영
    • 대한조선학회지
    • /
    • 제27권3호
    • /
    • pp.107-116
    • /
    • 1990
  • 구조물의 탄성을 고려한 탱크내 유동은 자유수면을 갖는 유체와 탄성변형하는 구조물이 연성된 시스템으로서 유체유동으로 인한 과도한 구조물변형, 유체의 부가질량 및 부가감쇠력에 의한 구조물의 동특성변화, 구조물 진동으로 인한 유체유동의 왜곡 등이 복합된 비선형 해석이 요구된다. 본 논문에서는 탱크 벽을 1자유도 수평운동하는 강체로 가정하였으며 Lagrangian 유한요소법을 이용하여 유동해석을 수행하였고 유체-구조물 연성문제의 수치적분을 위하여 조합된 implicit-explicit 알고리듬을 도입하였다. 탱크벽의 동특성 변화에 따른 유체-구조물연성 탱크의 동특성변화를 관찰하였으며 파도생성 문제에 관한 수치계산을 수행하였다.

  • PDF

Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core

  • Mohammadia, M.;Rastgoo, A.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.131-143
    • /
    • 2019
  • In this study, the nonlinear vibration analysis of the composite nanoplate is studied. The composite nanoplate is fabricated by the functional graded (FG) core and lipid face sheets. The material properties in the FG core vary in three directions. The Kelvin-Voigt model is used to study the viscoelastic effect of the lipid layers. By using the Von-Karman assumptions, the nonlinear differential equation of the vibration analysis of the composite nanoplate is obtained. The foundation of the system is modeled by the nonlinear Pasternak foundation. The Bubnov-Galerkin method and the multiple scale method are used to solve the nonlinear differential equation of the composite nanoplate. The free and force vibration analysis of the composite nanoplate are studied. A comparison between the presented results and the reported results is done and good achievement is obtained. The reported results are verified by the results which are obtained by the Runge-Kutta method. The effects of different parameters on the nonlinear vibration frequencies, the primary, the super harmonic and subharmonic resonance cases are investigated. This work will be useful to design the nanosensors with high biocompatibility.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

광화학-궤적 모델에 의한 여름철 맑은 날 서울지방의 지상 오존 농도 추정 (Estimate of Surface Ozone Concentration on Sunny Summer Days in Seoul Area by the Photochemical-Trajectory Model)

  • 이시우;이광목
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.497-506
    • /
    • 2002
  • A Photochemical-Trajectory model was used to understand the production of ozone in the atmospheric boundary layer. This model was composed of the trajectory and the photochemical models. To calculate trajectories of air parcels, winds were obtained from the three-dimensional nonhydrostatic mesoscale model (PSU/NCAR MM5V2), and the results were interpolated into constant height surfaces. Numerical integration in the trajectory model was performed by the Runge-Kutta method. The photochemical model consisted of chemical reactions and photodissociation processes. Chemical equations were integrated by the semi-implicit Bulirsch-Stoer method. We performed our experiments from 21 July to 23 July 1994 during the summer time for Seoul area. During the time of maximum ozone concentration in Seoul, four trajectories of air parcels which traveled from Inchon to Seoul were selected. Ozone concentrations estimated by two models are compared with observed one in Seoul area and the photochemical-trajectory model is better fitted than pure photochemical model. During the selected period, high ozone concentrations in Seoul area were more influenced by transferred pollutants from Inchon than emitted pollutants in Seoul.

임계노즐에서 발생하는 비정상유동에 관한 연구 (Study of the Unsteady Gas Flow in a Critical Nozzle)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF