• Title/Summary/Keyword: Run-off water

Search Result 143, Processing Time 0.032 seconds

A Study on the Runoff Characteristics m Kangwon Watershed (So-yang River Watershed) (강원도 유역의 유출 특성에 관한 연구 (소양강댐 유역 중심으로))

  • Choi, Han-Kyu;Beak, Hyo-Sun;Lee, Min-Seop
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.223-232
    • /
    • 2001
  • This study is finding the most appropriate model of kangwondo watershed. To synthesize each hydrograph, It is found to several parameters which are used in existing hydrographes. then the synthestic hydrograph is compared and investigated with many hydrographes of the rivers in kanwondo. These methods, Nakayasu, Clark, SCS are used to calculate the run-off of this watershed. When the calculated run-off is compared with real rating-curves, then it is found that the SCS method using the Clark's concentrantion time is the best way on this area having large watershed, long river length and gentle water slope, the Nakayasu method is more suitable on this area having small watershed, short river length and steep water slope. Also it is founded from analyzing run-off hydrographes, peak run-off and peak time that the Clark's method applied Kirpich's concentration time way is suitable in the area of kangwondo.

  • PDF

Run-Off Characteristicsof Pollutant Loadings in Rural Area (농촌지역의 유량.부하량관계식 산정)

  • 송인홍;박병흔;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.701-707
    • /
    • 1999
  • This study was initiated to collect background pollutant data for rural watersheds. The effluent/run-off polutant load and run-off ratio of the study areas were calculated and the two types of regression equations, L=a$.$Q+b and L=c$.$Qd where L and Q are the pollutant load(L) and discharge (Q), were derived. We acquired that the correlation coeffcients of the two types of regression equations were over than 90% except for BOD . Therefore, L-Q equations would be a measure to predict water quality of rural watersheds.

  • PDF

Characteristics of Runoff on Urban Watershed in Jeju island, Korea (제주도 도심하천 유역의 유출특성 해석)

  • Jung, Woo-Yul;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.555-562
    • /
    • 2013
  • Jeju Island, the heaviest raining area in Korea, is a volcanic Island located at the southernmost of Korea, but most streams are of the dry due to its hydrological/geological characteristics different from those of inland areas. Therefore, there are limitations in applying the results from the mainland to the studies on stream run-off characteristics analysis and water resource analysis of Jeju Island. In this study, the SWAT(soil & water assessment tool) model is used for the Hwabuk stream watershed located east of the downtown to calculate the long-term stream run-off rate, and WMS(watershed modeling system) and HEC-HMS(hydrologic modeling system) models are used to figure out the stream run-off characteristics due to short-term heavy rainfall. As the result of SWAT modelling for the long-term rainfall-runoff model for Hwabuk stream watershed in 2008, 5.66% of the average precipitation of the entire basin was run off, with 3.47% in 2009, 8.12% in 2010, and root mean square error(RMSE) and determination coefficient($R^2$) was 496.9 and 0.87, respectively, with model efficient(ME) of 0.72. From the results of WMS and HEC-HMS models which are short-term rainfall-runoff models, unless there was a preceding rainfall, the runoff occurred only for rainfall of 40mm or greater, and the run-off duration averaged 10~14 hours.

Influences of Forest Environment on the Water Yield in Small Forested Watersheds (삼림환경(森林環境)이 수자원(水資源) 함양(涵養)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.3
    • /
    • pp.283-291
    • /
    • 1993
  • These studies were carried out to investigate water yield from small forested watersheds at Choosan Stream-Gauging Stations in Chollanam-do province from May 11, 1991 to December 31, 1992. The purpose of these studies was to obtain useful informations as distribution of precipitation, canopy interception, stemflow, throughfall and run-off from the small forested watersheds. The precipitation at Choosan from May to December, 1991 was 1,306.6mm and at Choosan from January to December, 1992 was 1,143.4mm. The rate of canopy interception in Pinus taeda stand is 24.3% and 27% in Pinus densiflora stand. The run-off rate from the watershed was 48.87% at Bukmoongol small forested watershed and 41.19% at Baramgol small forested watershed.

  • PDF

Effect of Application level of Liquid Cattle Manure on the Run-Off Water and Soil Properties in Mixtures Swards (혼파초지에서 우분액비 시용수준이 유거수 및 토양특성에 미치는 영향)

  • 김원호
    • Journal of Animal Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2000
  • A manure management plan is important for all daily operations. This study was conducted to investigate the effect of application level of liquid cattle manure on the soil properties and changes of BOD and COD content in run-off water at the mixtures swards of National Livestock Research Institute RDA Suweon in 1995. The experiment was arranged in a randomized block design with five treatments consisting of no fertilizer chemical fertilizer application of 40, 60 and 80MT/ha as liquid cattle manure. The quantity of run-off for a no fertilizer was the highest of 1,469.4mm but that for a application level of liquid cattle manure of 60MT/ha was the lowest of 1,278.1mm. The change of BOD in run-off for a no fertilizer was the lowest of $19.84m{\ell}/{\;}{\ell}$, but that for a application level of liquid cattle manure of 80MT/ha was the highest of $36.22m{\ell}/{\;}{\ell}$. Change of COD in run-off for a no fertilizer was the lowest of $21.28m{\ell}/{\;}{\ell}$ but that for a application level of liquid cattle manure of 80MT/ha was the highest of $37.51m{\ell}/{\;}{\ell}$. Available phosphorus and total-N content of soil chemical properties was higher at liquid cattle manure than chemical fertilizer.

  • PDF

Evaluation of Runoff Loads and Computing of Contribute ratio by First Flush Stormwater from Cheongyang-Hongseong Road (청양-홍성간 도로에서의 초기강우에 의한 유출부하량 평가 및 기여율 산정)

  • Lee, Chun-Won;Kang, Seon-Hong;Choi, I-Song;An, Tae-Ung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.407-417
    • /
    • 2011
  • Nowadays, the high land use, mainly used for urbanization, is affecting runoff loads of non-point pollutants to increase. According to this fact, increasing runoff loads seems like to appear that it contributes to high ratio of pollution loads in the whole the pollution loads and that this non-point source is the main cause of water becoming worse quality. Especially, concentrated pollutants on the impermeable roads run off to the public water bodies. Also the coefficient of runoff from roads is high with a fast velocity of runoff, which ends up with consequence that a lot of pollutants runoff happens when it is raining. Therefore it is very important project to evaluate the quantity of pollutant loads. In this study, I computed the pollutant loadings depending on time and rainfall to analyze characteristics of runoff while first flush storm water and evaluated the runoff time while first flush storm water and rainfall based on the change in curves on the graph. I also computed contribution ratio to identify its impact on water quality of stream. I realized that the management and treatment of first flush storm water effluents is very important for the management of road's non-point source pollutants because runoff loads of non-point source pollution are over the 80% of whole loads of stream. Also according to the evaluation of runoff loads of first flush storm water for SS, run off time was shown under the 30 minute and rainfall was shown under the 5mm which is less than 20% of whole rainfall. These are under 5mm which is regarded amount of first flush storm water by the Ministry of Environment and it is judged to be because run off by rainfall is very fast on impermeable roads. Also, run off time and rainfall of BOD is higher than SS. Therefore I realized that the management of non-point source should be managed and done differently depending on each material. Finally, the contribution ratio of pollutants loads by rainfall-runoff was shown SS 12.7%, BOD 12.7%, COD 15.9%, T-N 4.9%, T-P 8.9%, however, the pollutants loads flowing into the steam was shown 4.4%. This represents that the concentration of non-point pollutants is relatively higher and we should find the methodical management and should be concerned about non-point source for improvement on water quality of streams.

Analysis of the GIS-Based Water Cycle System for Effective Rainwater Management of Gyeongsangnam-do (경상남도의 효율적 빗물관리를 위한 GIS 기반 물순환 체계 분석)

  • Lee, Taek-Soon;Song, Bong-Geun;Han, Chi-Bok;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.82-95
    • /
    • 2011
  • The objective of this paper is to analyze the GIS-based water cycle system: rainfall, evapotranspiration, surface run-off of Gyeongsanam-do for the effective rainwater management. The rainfall(1999~2008) analyzed by a spatial interpolation method, showed relatively higher amount in Hadong-gun, Sanchung-gun, and Sacheon-gun on the southwest coast than in Changnyeong-gun, Miryang-si, and Changwon-si in the mideast inland. The evapotranspiration was calculated by the three independent variables: air temperature, landuse, and NDVI(normalized difference vegetation index). The analysis showed that Namhae-gun had the highest evapotranspiration of 93.71mm, and Jinhae-si and Changwon-si had the lowest values of 81.78mm and 84.37mm. The surface run-off was analysed by a run-off equation based on the SCS hydrologic soil classification and landuse. The amount of surface run-off showed that Hadong-gun had the highest value, of 90.40mm, and Geochang-gun had the lowest, of 46.69mm. The analysis results of the GIS-based water cycle system will be used to support the establishment of the effective rainwater management plan in Gyeongasngnam-do.