• Title/Summary/Keyword: Run up

Search Result 833, Processing Time 0.025 seconds

A Study on Improvement of Run-Time in KS-SIGNAL, Traffic Signal Optimization Model for Coordinated Arterials (간선도로 연동화 신호최적화 모형 KS-SIGNAL의 수행속도 향상을 위한 연구)

  • 박찬호;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.7-18
    • /
    • 2000
  • KS-SIGNAL, a traffic signal optimization model for coordinated arterials, is an optimization model using the mixed integer linear Programming that minimizes total delay on arterials by optimizing left-turn Phase sequences. However, the Previous version of KS-SIGNAL had a difficulty in reducing computation speed because the related variables and constraints multiply rapidly in accordance with the increase of intersections. This study is designed to propose a new model, improving optimizing computation speed in KS-SIGMAl, and evaluate it. This Paper Puts forth three kinds of methodological approaches as to achieve the above goals. At the first step to reduce run-time in the proposed model objective function and a few constraints are Partially modified, which replaces variable in related to queue clearance time with constant, by using thru-movements at upstream intersection and the length of red time at downstream intersection. The result shows that the run-time can be reduced up to 70% at this step. The second step to load the library in LINDO for Windows, in order to solve mixed integer linear programming. The result suggests that run-time can be reduced obviously up to 99% of the first step result. The third step is to add constraints in related to left-turn Phase sequences. The proposed methodological approach, not optimizing all kinds of left-turn sequences, is more reasonable than that of previous model , only in the view of reducing run-tim. In conclusion, run-time could be reduced up to 30% compared with the second results. This Proposed model was tested by several optimization scenarios. The results in this study reveals that signal timing plan in KS-SIGNAL is closer to PASSER-II (bandwidth maximizing model) rather than to TRANSYT-7F(delay minimizing model).

  • PDF

Analysis of Hydraulic Characteristic in Surf Zone using the SWASH Model during Typhoon NAKRI(1412) in Haeundae Beach (SWASH 모형을 이용한 태풍 나크리(NAKRI)에 의한 해운대 해수욕장의 쇄파대 수리특성 해석)

  • Lee, Jong-Sup;Park, Myeong-Won;Kang, Min-Ho;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2015
  • A hydraulic characteristics in the surf zone such as wave breaking points, wave set-down, wave set-up, wave-induced currents and run-up heights are studied using the SWASH model during Typhoon NAKRI(1412) in Haeundae Beach. Incident wave conditions is obtained from one-hourly observed wave data by KHOA and irregular wave by JONSWAP spectrum is given as an open boundary condition in the model. A Wave-induced current patterns by the SWASH model is compared with the observed currents and sediment flux patterns in that areas, the calculated maximum wave run-up heights in the model is compared with the video monitoring data, the empirical formula by Stockdon et al. and Mase. A dominant longshore currents toward the east of the beach appears due to the effect of incident wave direction and the geographical features and some rip currents occurs at the central part of the beach. The maximum wave run-up height(1.15 m) by the SWASH model shows a similar pattern with the video monitoring data(1.26 m) and the magnitude shows a similar result(1.33m) by Stockdon et al.

Experimental Study on Reduction of Rup-Up Height of Sloping Breakwater due to Submerged Structure (수중 구조물에 의한 경사식 방파제의 처오름 감소에 관한 실험적 연구)

  • Park, Seung-Hyun;Lee, Seung-Oh;Jung, Tae-Hwa;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.187-197
    • /
    • 2007
  • Experimental study for a submerged structure was conducted to protect coastal structures and shorelines. The rectangular submerged structure known as the most efficient shape among various submerged structures in the literature was fabricated at the nose of a rubble mound breakwater. The reflection coefficients and the run-up heights along the slope of a breakwater were measured for different significant wave heights and periods. It is found in this study that the reflection coefficient is affected more relatively by the significant wave period than the significant wave height and the run-up heights are reduced approximately 28% in terms of ${^{RU}}_{2%}$ and 26% in terms of ${^{RU}}_{33%}$, respectively, by the installation of a submerged structure inducing the interception and breaking of waves.

The Study on the Analysis of the Rate of Information Acquisition and the Observation Time shown at the Observation of Interior Space (실내공간의 주시에 나타난 정보획득률과 주시시간 분석에 관한 연구)

  • Choi, Joo-Young;Kim, Joo-Hyun;Choi, Gae-Young;Lee, Jeong-Ho;Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.6
    • /
    • pp.183-191
    • /
    • 2011
  • This study is to set up the appropriate range of observation time through contemplating the characteristics of observation time run for the information acquisition of space. The conclusions reached through this study are as the followings. First, this study could find out that even though the evaluation elements on the three types for image evaluation were the same, the information acquisitions were different as those types varied. On the other hand, the change of the average run-time by type for the information acquisition was found not to be big, in other words, even though the run-time was alike, the information acquisitions varied depending on the type. Second, he evaluation by language media showed the average value by element had the order of [shape>position>number>existence] and the range of their run-time was 94.6~102.9 seconds. The average rate of information acquisition shown at the visual media had the order of [composition>shape>material&color] and the range of run-time was 93.1~99.7 seconds. Third, the evaluation by language media showed that for male subjects the range of information acquisition rate was 39.1~91.4% and that of run-time 85.1~106.0 seconds and for female ones 46.0~94.6% and 96.3~112.3 seconds respectively. In case of the visual media, male subjects showed the range of information acquisition rate was 40.3-66.7% and the range of run-time 82.4~97.9 seconds and the female ones, 42.2~71.0% and 94.0~115.1 seconds respectively, through which we could see that at the evaluation by language media and visual media both the female's range of information acquisition and that of observation time were higher than the male's.

An Estimation of the Congestion Tolls Considering External Costs in Seoul (외부비용을 반영한 도시내 도로의 혼잡통행료 추정: 서울시를 대상으로)

  • PARK, Chanwoon;KIM, Sungsoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.520-530
    • /
    • 2015
  • This paper formulates the methodologies to estimate optimal congestion tolls from long-run and short-run perspectives and applies them to the highways of Seoul. An optimal long-run congestion toll is estimated with an optimal volume-capacity-ratio to minimize the total costs which consist of two components: road construction and maintenance costs and traveler costs. By contrast, an optimal short-run congestion toll is estimated with a supply-demand equilibrium which is determined by using a speed-flow function and a disaggregate modal choice model. The results of a long-run analysis for the Seobu urban expressway suggest the optimal volume-capacity-ratio of 1.35 and the optimal congestion toll of 503 Won per automobile kilometer. By contrast, those of a short-run analysis for the Mia-ro urban arterial suggest 1.31 and 420 Won, respectively. Although our results are to some degree dependent on the interest rate and time value assumed, one basic conclusion holds up: the congestions toll tested could generate substantial gains in social welfare if applied to Seoul.

Analysis of time-saving effects on increasing the speed through the trial run test in Gyeongbu line (틸팅시제열차 경부선 증속시험운행을 통한 시간단축효과분석)

  • Han, Seong-Ho;Lee, Su-Gil
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1935-1942
    • /
    • 2011
  • We have tested the developed Korean tilting train in main exisiting commercial line for speed-up on cuve section to achive reduction effects of running time. We have conducted a trial run test to speed-up 30km/h on curves in Gyeongbu line successfully. Normal current train have been operated 110km/h in 600m radius. Yet, tilting train was tested 135km/h(maximum operation line speed) in same sections. We confirmed that the dynamic runing stability of train was safety by regarding wheel load and lateral force.

  • PDF

Hydraulic Characteristics of Permeable Breakwater in relation to the internal Waterlevel Fluctuation (투과성 방파제의 내부수위 변동과 방파제의 수리특성)

  • 윤한삼;전재우;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.46-53
    • /
    • 2002
  • In the study, the interaction characteristics among incident waves, run-up and internal waterlevel at core layer of breakwaters were investigated. The effect of core materials on the internal waterlevel characteristics are also discussed using the results with both regular and irregular wave tests. The main results obtained are as follows; The higher internal waterleve was observed under the permeable breakwater with core layer of the lower permeability than with the higher one. And, the internal waterlevl decreased as far as the distance from the toe. In the irregular wave test, the grouping characteristics of incident waves make large fluctuation of the waterlevel. Especially, breakwaters internal waterlevel appeared to affect the hydraulic characteristics on slope.

Characteristic Analysys of Songdo Beach, Busan, Shoreline Changes (부산 송도해수욕장의 해안선변화 특성 분석)

  • Kim, Myoung-Kyu;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • In this study, an investigation of the shoreline changes at Song-do beach in Busan was carried out for a coastal improvement project to prevent damage from coastal disasters. From the results of the observed data, it is seen that the shoreline moves seaward under extreme wave conditions and moves leeward under normal wave conditions. The reason for this is wave run-up when wave conditions are extreme in summer. In addition, nourishment sand is moved seaward by wave run-up. Thus, the shoreline's slope is gently decreased. Therefore, the shoreline is moved seaward.

A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow (투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석)

  • Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.

On Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank

  • Koo, Weon-Cheol;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank (NWT). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWT, physical characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression, are simulated for the early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a systematic sensitivity analysis. In particular, the fully nonlinear NWT results are compared with linear results (exact body-boundary conditions with linear free-surface conditions) to identify the nonlinear effects in the respective cases.