DOI QR코드

DOI QR Code

Analysis of Hydraulic Characteristic in Surf Zone using the SWASH Model during Typhoon NAKRI(1412) in Haeundae Beach

SWASH 모형을 이용한 태풍 나크리(NAKRI)에 의한 해운대 해수욕장의 쇄파대 수리특성 해석

  • Lee, Jong-Sup (Department of Civil Engineering, Pukyong National University) ;
  • Park, Myeong-Won (Oceanographic Observation Division, Korea Hydrographic and Oceanographic Agency) ;
  • Kang, Min-Ho (Department of Coastal Management, GeoSystem Research Corp.) ;
  • Kang, Tae-Soon (Department of Coastal Management, GeoSystem Research Corp.)
  • 이종섭 (부경대학교 토목공학과) ;
  • 박명원 (국립해양조사원 해양관측과) ;
  • 강민호 ((주)지오시스템리서치 연안관리부) ;
  • 강태순 ((주)지오시스템리서치 연안관리부)
  • Received : 2015.09.03
  • Accepted : 2015.10.27
  • Published : 2015.10.31

Abstract

A hydraulic characteristics in the surf zone such as wave breaking points, wave set-down, wave set-up, wave-induced currents and run-up heights are studied using the SWASH model during Typhoon NAKRI(1412) in Haeundae Beach. Incident wave conditions is obtained from one-hourly observed wave data by KHOA and irregular wave by JONSWAP spectrum is given as an open boundary condition in the model. A Wave-induced current patterns by the SWASH model is compared with the observed currents and sediment flux patterns in that areas, the calculated maximum wave run-up heights in the model is compared with the video monitoring data, the empirical formula by Stockdon et al. and Mase. A dominant longshore currents toward the east of the beach appears due to the effect of incident wave direction and the geographical features and some rip currents occurs at the central part of the beach. The maximum wave run-up height(1.15 m) by the SWASH model shows a similar pattern with the video monitoring data(1.26 m) and the magnitude shows a similar result(1.33m) by Stockdon et al.

본 연구에서는 태풍 나크리에 의한 해운대 해수욕장의 쇄파대 수리특성을 SWASH 모형을 이용하여 분석하였다. 국립해양조사원에서 제공하는 파랑관측자료를 바탕으로 태풍 나크리 내습 시의 대표파를 선정하였다. 수치모형에서 입사파는 JONSWAP Spectrum에 의한 불규칙파로 선정하였다. SWASH 모형에 의해 산정된 해빈류 패턴은 현지관측자료와 비교하였으며 수치모형에서 산정된 최대소상고는 비디오 모니터링 자료 및 경험식과 비교하였다. 최대소상고의 위치는 비디오 모니터링 자료에 나타난 파흔을 이용하여 유추하였으며 태풍 NAKRI(1412) 내습 시 S 계열의 파랑이 지배적으로 작용하였으며 동백섬측에서 미포측으로 연안류가, 해운대 해수욕장 중앙부근에서 이안류가 발생하였다. SWASH 모형을 이용하여 산정한 최대소상고(1.15 m)는 비디오 모니터링 자료(1.26 m)와 유사한 경향성을 나타냈으며 Stockdon et al.에 의해 제시된 경험식(1.33m)과 비교적 유사하게 나타났다.

Keywords

References

  1. Busan Regional Oceans & Fisheries Administration(2015), Report on Project of Coastal Erosion Monitoring for Coastal Maintenance Projects in Haeundae Beach[2nd year].
  2. Cho, Y. N. and I. H. Park(2010), Applicability of Boussinesq Models for Wave Deformation and Wave-Induced Current. Journal of the Korean society of marine environment & safety. Vol. 16, No. 2, pp. 185-193.
  3. Choi, J. W., W. K. Park and S. B. Yoon(2011), Boussinesq Modeling of a Rip Current at Haeundae Beach. Journal of Korean Society of Coastal and Ocean Engineers, Vol. 23, No. 4, pp. 276-284. https://doi.org/10.9765/KSCOE.2011.23.4.276
  4. Jang, S. Y., S. M. Cho, W. K. Park and H. T. Jeong(2014), A Study on Characteristics of Sediment Transport around Myeongseondo at Jinha Beach. Journal of Korean Society of Coastal Disaster Prevention. V. 1, No. 3, pp. 118-125.
  5. Kennedy, A. B., Q. Chen, J. Kirby and R. A. Dalrymple(2000), Boussinesq Modelling of Wave Transformation, Breaking and Run-up. I: One dimension, J. Waterway, Port, Coastal and Ocean Engineering, 126, pp. 39-47, 10.1061/(ASCE)cc.1943-5614.0000136.
  6. Kim, I. C., J. Y. Lee and J. L. Lee(2010), Generation Mechanism and Numerical Simulation of Rip Current at Haeundae Beach. J. of Korean Society of Coastal and Ocean Engineers, Vol. 23, No. 1, pp. 70-78. https://doi.org/10.9765/KSCOE.2011.23.1.070
  7. Lee, Y. K., I. H. Park and J. S. Lee(2005), A 2-D Numerical Model of Longshore Currents due to Irregular Waves, Proc. of the 3rd Inter. Conf. of APAC, pp. 223-226.
  8. Longuet-Higgins, M. S.(1970), Longshore currents generated by obliquely incident sea wave. 1, 2, J.Geophys. Res., Vol. 75, pp. 6778-6801. https://doi.org/10.1029/JC075i033p06778
  9. Longuet-Higgins, M. S. and R. W. Stewart(1962), Radiation stress and mass transport in gravity waves; with application to surf beat. J. Fluid Mech., Vol. 13, pp. 481-504. https://doi.org/10.1017/S0022112062000877
  10. Longuet-Higgins, M. S. and R. W. Stewart(1964), Radiation stresses in water wave; a physical discussion, with applications. Deep-Sea Research, Vol. 11, pp. 529-562.
  11. Mase, H.(1989), Random Wave Runup Height on Gentle Slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 115, 5, pp. 649-661. https://doi.org/10.1061/(ASCE)0733-950X(1989)115:5(649)
  12. Miche, M.(1944), Movements Ondulatoires des Mers en Profondeur Constante ou Decroissante, Annales des Ponts et Chaussees, Tome 114, pp. 131-164, pp. 270-292, pp. 369-406.
  13. Ministry of Oceans and Fisheries(2014), Report on coastal erosion Monitoring in 2014.
  14. Ministry of Oceans and Fisheries(2015), Kickoff Report on development of coastal erosion countermeasures technique[3rd year].
  15. Smit, P., M. Zijlema and G. Stelling(2013), Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coast. Engng., 76, pp. 1-16. https://doi.org/10.1016/j.coastaleng.2013.01.008
  16. Stelling, G. S. and S. P. A. Duinmeijer(2003), A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43, pp. 1329-1354. https://doi.org/10.1002/fld.537
  17. Stelling, G. and M. Zijlema(2003), An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Meth. Fluids, 43, pp. 1-23. https://doi.org/10.1002/fld.595
  18. Stockdon, H. F., R. A. Holman, P. A. Howd, J. A. H. Sallenger(2006), Empirical parameterization of setup, swash, and runup. Coast. Eng. 53(7), pp. 573-588. https://doi.org/10.1016/j.coastaleng.2005.12.005
  19. The SWASH team(2010), SWASH USER MANUAL. Delft University of Technology.
  20. Vilani, M., J. Bosboom, M. Zijlema and M. J. F. Stive(2012), Circulation patterns and shoreline response induced by submerged breakwaters, in: P.J. Lynett and J.M. Smith (Eds.), Proc. 33th Int. Conf. on Coast. Engng., ASCE, World Scientific Publishing, Singapore, paper no. structures. 25.
  21. Yoon, J. J.(2014), Non-Hydrostatic Modeling of Wave Transformation and Rip Current Circulation: A Case Study for Haeundae Beach, Korea. Journal of Coastal Research, Special Issue No. 72, pp. 184-189.
  22. Zijlema, M. and G. S. Stelling(2005), Further experiences with computing non-hydrostatic free-surface flows involving water waves. Int. J. Numer. Meth. Fluids, 48, pp. 169-197. https://doi.org/10.1002/fld.821
  23. Zijlema, M. and G. S. Stelling(2008), Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coast. Engng., 55, pp. 780-790. https://doi.org/10.1016/j.coastaleng.2008.02.020
  24. Zijlema, M., G. Stelling and P. Smit(2011), SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Engng., 58, pp. 992-1012. https://doi.org/10.1016/j.coastaleng.2011.05.015