• Title/Summary/Keyword: Rumen Temperature

Search Result 78, Processing Time 0.027 seconds

Verification of accuracy detection of the cows estrus using biometric information measuring device (생체정보 측정장치를 활용한 젖소 발정탐지의 정확도 검증)

  • Yang, Ka-Young;Woo, Sae-Mee;Kwon, Kyeong-Seok;Choi, Hee-Chul;Jeon, Jung-Hwan;Lee, Jun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.652-657
    • /
    • 2018
  • Breeding control in a farm is a very important factor affecting milk productivity. Breeding management is important for the early detection of estrus, and reliable, automatic, more accurate, and faster monitoring of the timing of dairy cows is essential for farmers. This study measured the accuracy of estrus using the estrus indications, changes in activities, rumination activities, ruminal temperature, and pH. The biomedical information device S1 used in this study provided an estrus notice using the rumen temperature, pH, cow activities, and number of drinking estimations, which were inserted in the rumen through the oral route. The S2 device was used in the estrus notice for the rumen activities and cow activities. The data collected on the instrument were collected at intervals of 2 hours per day at the reference days (RD: -7~-3, +7~+ 3) +2), 7 days before insemination, and 7 days after insemination. The activities of the S1 device used in this paper increased with increasing number of insemination days (-1: $12.5{\pm}1.03/day$; 0: $12.9{\pm}1.73/day$) compared to the reference day (RD: $10.2{\pm}1.0/day$). The activities of the S2 device was also found to increase from the reference day to the insemination day (0: $63.0{\pm}3.66$) compared to the reference day (RD: $40.3{\pm}2.68$). The number of daily drinks in S1 decreased from the reference day (RD: $5.9{\pm}0.89/day$) to before the insemination day (-2: $5.6{\pm}0.98$; -1: $5.7{\pm}0.96$); +2: $6.0{\pm}0.73$). The number of daily drinks on the insemination day (0: $6.3{\pm}0.86$; +2: $6.0{\pm}0.73$) was similar to the reference day. The number of daily rumination in S2 decreased from the reference day (RD: $493.8{\pm}10.92$) to the insemination day (-1: $390.2{\pm}13.36$; 0: $354.1{\pm}16.71$).

EFFECTS OF HEAT EXPOSURE ON WATER METABOLISM AND PASSAGE IN SHEEP

  • Katoh, K.;Buranakarl, C.;Matsunaga, N.;Lee, S.R.;Sugawara, T.;Sasaki, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 1989
  • The present experiment was carried out to investigate the effects of heat exposure on water metabolism and the passage of indigestible particles in sheep. Water intake, respiratory rate, rectal temperature and pH of ruminal fluid and urine were significantly higher (P<0.05) in the hot environment ($32\;^{\circ}C$) than in the control environment ($20\;^{\circ}C$). Urine osmolality and blood volume were increased, while glomerular filtration rate was decreased, in the hot environment. The liquid flow rate from reticulo-rumen and the excretion of indigestible particles of specific gravity 0.99 (but not 1.27 or 1.38) were increased in the hot environment. From these findings, it is suggested that an increased water intake evoked by heat exposure might affect the flow rate of digesta in sheep.

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.

FEEDING OF BYPASS PROTEIN TO CROSS BRED COWS IN INDIA ON STRAW BASED RATION

  • Kunju, P.J.G.;Mehta, A.K.;Garg, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.107-112
    • /
    • 1992
  • Feeding of bypass protein to lactating animals have been suggested by many research scientists as a way to increase the nutrient supply at the intestinal level thereby enhance animal production in ruminant animals. A feeding trial with a formulated bypass protein feed on straw based ration was carried out by using lactating cross bred cows at the stage of 4th month of their lactation. Bypass protein feed was fed at 5 different levels. Urea Molasses Block was used as a nitrogen source to the rumen microflora. In order to reduce the heat increment straw intake was restricted to all the animals. Urea Molasses Block intake was noticed varying in proportion with the bypass protein feed intake. Milk production was observed increasing in accordance with the level of bypass protein feed intake. However, the maximum response was noticed in cows that were fed 3 kg bypass protein feed. The nutrient availability at this stage was below the NRC (1988) requirements. Other remarkable finding was that the cows maintained the persistency of milk production even after 3rd month of lactation when the ambient temperature was $40^{\circ}C$.

EFFECTS OF PROLONGED EXPOSURE TO THE SUN ON BODY WATER TURNOVER AND VOLUME OF THE BLOOD IN SWAMP BUFFALOES

  • Chaiyabutr, N.;Buranakarl, C.;Loypetjra, P.;Chanpongsang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1990
  • During prolonged exposure to the sun for 8 h each day for 10 days in which the highest ambient temperature around 14:00 h was $39^{\circ}C$, buffaloes exposed to the sun without shade increased the turnover of body water by 35% and 76% on day 5 and day 10 of exposure respectively. The total body water markedly decreased on day five and this amount was maintained thereafter. Plasma and blood volumes did not change significantly on day five but markedly decreased on day 10. Packed cell volume significantly decreased on day five and day 10 of the exposure period. The reduction of packed cell volume on day 10 coincided with the decrease in total plasma water. On day 10 of the exposure, an increase in the rate of liquid flow from the rumen was noted. It is concluded that on the fifth day of exposure, the increase in the evaporative cooling process was attributed to initial mobilization of water from the intracellular compartment. The reduction of both plasma and cell volumes occurring from day five to day 10 indicated a loss of body water from both intracellular and extracellular compartments.

Direct Effect of a Hot Environment on Ruminal Motility in Sheep

  • Sunagawa, Katsunori;Arikawa, Yuji;Higashi, Mika;Matsuda, Hiroshi;Takahashi, Hiroshi;Kuriwaki, Zyunichi;Kojiya, Zuikou;Uechi, Syuntoku;Hongo, Fujiya
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.859-865
    • /
    • 2002
  • The aim of this research was to clarify the direct effects of a hot environment on ruminal motility in sheep fed twice a day. In the first experiment, in order to equalize variable factors excluding the ambient temperature between the thermoneutral environment ($23^{\circ}C$, relative humidity 80%) and the hot environment ($32^{\circ}C$, relative humidity 80%), sheep were fed equal amounts of the same quality feed twice a day. The sheep were allowed free access to water for the duration of the two one-hour feeding periods (10:00 am-11:00 am, 5:00 pm-6:00 pm). On the fourth day after exposure to the hot environment, the frequency and strength of ruminal contractions were continuously recorded between 9:30 am and 11:00 pm. Prior to the exposure to a hot environment the frequency and strength of ruminal contractions were recorded in a thermoneutral environment during the period 9:30 am-11:00 pm. In the second experiment, in order to maintain the stomach content of the sheep at equal levels in both environments, the sheep were fed equal amounts of the same quality feed twice a day. Following the completion of the two one-hour feeding periods, a fixed amount of warm water was infused into the rumen. Rumen motility was then recorded during the same period as for the first experiment (9:30 am-11:00 pm). In the first experiment, when the frequency of ruminal contractions prior to (24, 24 frequency/15 min), during (48, 47 frequency/min) and after (22, 19 frequency/min) both the morning and afternoon feeding in a hot environment was compared with the values from the thermoneutral environment (20, 22; 50, 50; 21, 20 frequency/min), there was found to be no difference. However, the strength of ruminal contractions after morning and afternoon feeding (3.7, 3.1 mm Hg) in the hot environment decreased significantly in comparison with the thermoneutral environment (4.3, 3.8 mm Hg). In the second experiment, the frequency of ruminal contractions in the hot environment was not significantly different from that in the thermoneutral environment. The strength of ruminal contractions after ruminal infusion of warm water in the hot environment (morning: 4.6, afternoon: 4.5 mm Hg) was significantly lower than that in the thermoneutral environment (morning: 5.6, afternoon: 5.0 mm Hg). The results suggest that a hot environment acts directly on the strength of ruminal contractions in sheep fed twice a day rather than on the frequency.

Adaptation of Feedlot Cattle to a High-energy Ration by Intraruminal Transplantation of Adapted Ruminal Fluid (제1위내용액 이식에 의한 비육우의 농후사료 적응법에 관한 연구)

  • 이현범;탁연빈;성은주;김기석;이영주;정재석;장종식;권오덕
    • Journal of Veterinary Clinics
    • /
    • v.15 no.1
    • /
    • pp.62-74
    • /
    • 1998
  • In feedlot cattle the abrupt change of diet from roughage to a large quantity of grain for the purpose to improve production often results in increased occurrence of rumen acidosis or acute carbohydrate encouragement enterotoxemia, bloats diarrhea liver abscess and laminitis or robot disease. The common management practice to control these problem is to increase the amount of concentrates in the diet in a stepwise manner until the animals are adapted to a high-grain ration. However this practice requires at least about 3 weeks adaptation period and specially prepared adaptation rations which contain various amount of concentrates. Present experiment was undertaken in order to findout the more simple and rapid adaptation method of cattle to a high grain ration. Nineteen Korean calves aging from four to six month were fed artifical hay (Youngchoun Chuk-Hyup, Korea) which contains 10% of concentrates or alfalfa and rye grass hays for two months and randomly alloted to three experimental groups and two control groups. The experimental group-1 was inoculated by stomach tube for two days with li500 ml/day of ruminal fluid fished from Korean beef cattle that had been previously adapted to a high-energy ration. The experimental group-2 was inoculated by trocalization for two days with the same ruminal fluid. The experimental group-3 was inoculated by trocalization with 1,500 ml/day of bacterial culture which contained 2$\times $10$^{9}$/m1 of Gram-negative bacteria derived from adapted luminal fluid. The two control groups were treated with normal saline solution by the same methods. All animals were fed high-energy ration that contained 80% of grain ad libitum for 30-74 days beginning on the third of the treatment. The effect of the inoculation on the adaptation was observed clinicopathologically with the following results; All of the experimental calves inoculated with the ruminal fluid or Gram-negative bacterial culture derived from adapted cattle did not show any signs of rumen acidosis or other related diseases, while most of the control calves did show diarrhea and bloat and a calf laminitis. The average daily weight gain and feed efficiency of experimental calves were slightly improved compared with control calves. Following the feeding of high-grain rational the pH of the ruminal fluid was lowered in both the experimental and control groups. However severe acidosis with the pH of below 5.0 was observed in only a control group-2. The protozoal number in ruminal fluid was markedly decreased during the high-grain feeding in both the experimental and control calves. However the decrease was mere severe in control calves compared with the experimental calves. The activation of the protozoa were completely disappeared within nine hours at the refrigerator temperature (4"C). No significant differences in heamatological and blood chemical values between the experimental and control calves were recognized. However in one control calf which showed clinically laminitis marked elevations of serum glutamic oxaloacetate transaminase and lactic dehydrogenase activities and a decrease of serum glucose level were observed. From these results it would be concluded the intraruminal transplantation of unadapted calves with the adapted ruminal fluid from cattle previously adapted to a high-energy ration prevents disease problem associated with high-grain feeding and improve weight gain and feed efficiency.ency.

  • PDF

Effects of Lactic Acid Bacteria, Storage Temperature and Period on Fermentation Characteristics, and in vitro Ruminal Digestibility of a Total Mixed Ration

  • Suyeon Kim;Tabita Dameria Marbun;Kihwan Lee;Jaeyong Song;Jungsun Kang;Chanho Lee;Duhak Yoon;Chan Ho Kwon;Eun Joong Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.276-285
    • /
    • 2022
  • This study evaluated the effect of lactic acid bacteria (LAB, a mixture of Enterococcus faecium and Lactobacillus plantarum) supplementation, the storage temperature, and storage period on the fermentation characteristics and in vitro ruminal digestibility of a total mixed ration (TMR). The TMR was prepared into two groups, namely, CON (control TMR without the LAB) and ML (supplementing a mixture of E. faecium and L. plantarum in the ratio of 1% and 2% (v/w), respectively). Both groups were divided and stored at 4℃ or 25℃ for 3, 7, and 14 d fermentation periods. Supplementing LAB to the TMR did not affect the chemical composition of TMR except for the lactate and acetate concentration. Storage temperatures affected (p<0.05) the chemical composition of the TMR, including pH, lactate, and acetate contents. The chemical composition of TMR was also affected (p<0.05) by the storage period. During in vitro rumen fermentation study, the ML treatment showed lower (p<0.05) dry matter digestibility at 24 h incubation with a higher pH compared to the CON. There was no difference in the in vitro dry matter digestibility (IVDMD) of TMR between the CON and ML treatment however, at 24 h, ML treatment showed lower (p<0.05) IVDMD with a higher pH compared to the CON. The effects of storage temperature and period on IVDMD were not apparent at 24 h incubation. In an in vivo study using Holstein steers, supplementing LAB to the basal TMR for 60 d did not differ in the final body weight and average daily gain. Likewise, the fecal microbiota did not differ between CON and ML. However, the TMR used for the present study did include a commercial yeast in CON, whereas ML did not; therefore, results were, to some extent, compromised in examining the effect of LAB. In conclusion, storage temperature and period significantly affected the TMR quality, increasing acetate and lactate concentration. However, the actual effects of LAB supplementation were equivocal.

Effect of energy density and virginiamycin supplementation in diets on growth performance and digestive function of finishing steers

  • Navarrete, Juan D.;Montano, Martin F.;Raymundo, Constantino;Salinas-Chavira, Jaime;Torrentera, Noemi;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1396-1404
    • /
    • 2017
  • Objective: This study was determined the influence of virginiamycin supplementation on growth-performance and characteristics of digestion of cattle with decreasing dietary net energy value of the diet for maintenance ($NE_m$) from 2.22 to 2.10 Mcal/kg. Methods: Eighty crossbred beef steers ($298.2{\pm}6.3kg$) were used in a 152-d performance evaluation consisting of a 28-d adaptation period followed by a 124-d growing-finishing period. During the 124-d period steers were fed either a lesser energy dense (LED, $2.10Mcal/kg\;NE_m$) or higher energy dense (HED, $2.22Mcal/kg\;NE_m$) diet. Diets were fed with or without 28 mg/kg (dry matter [DM] basis) virginiamycin in a $2{\times}2$ factorial arrangement. Four Holstein steers ($170.4{\pm}5.6kg$) with cannulas in the rumen (3.8 cm internal diameter) and proximal duodenum were used in $4{\times}4$ Latin square experiment to study treatment effects on characteristics of digestion. Results: Neither diet energy density nor virginiamycin affected average daily gain (p>0.10). As expected, dry matter intake and gain efficiency were greater (p<0.01) for LED- than for HED-fed steers. Virginiamycin did not affect estimated net energy value of the LED diet. Virginiamycin increased estimated NE of the HED diet. During daylight hours when the temperature humidity index averaged $81.3{\pm}2.7$, virginiamycin decreased (p<0.05) ruminal temperature. Virginiamycin did not influence (p>0.10) ruminal or total tract digestion. Ruminal (p = 0.02) and total tract digestion (p<0.01) of organic matter, and digestible energy (p<0.01) were greater for HED vs LED. Ruminal microbial efficiency was lower (p<0.01) for HED vs LED diets. Conclusion: The positive effect of virginiamycin on growth performance of cattle is due to increased efficiency of energy utilization, as effects of virginiamycin on characteristics of digestion were not appreciable. Under conditions of high ambient temperature virginiamycin may reduce body temperature.

Korean native calf mortality: the causes of calf death in a large breeding farm over a 10-year period (대규모 한우 번식 목장에서의 10년간 송아지 폐사 원인)

  • Kim, Ui-Hyung;Jung, Young-Hun;Choe, Changyong;Kang, Seog-Jin;Chang, Sun-Sik;Cho, Sang-Rae;Yang, Byung-Chul;Hur, Tai-Young
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • Calf losses have an economic impact on larger Korean native cattle (KNC) breeding farms due to replacement, productivity, and marketing. However, little research on KNC calf mortality or causes of calf death on large-scale breeding farms has been conducted. Based on medical records and autopsy findings from the Hanwoo experimental station of the National Institute of Animal Science, calf death records from 2002 to 2011 were used to identify the causes of mortality. Mortality rate of KNC calves was 5.7%. Large differences (1.8~12.6%) in yearspecific mortalities were observed. Calf deaths were due to digestive diseases (68.7%), respiratory diseases (20.9%), accidents (6.0%), and other known diseases (2.2%). The main cause of calf death was enteritis followed by pneumonia, rumen indigestion, and intestinal obstruction. The greatest number of calf deaths occurred during the fall followed by summer. These results indicated that enteritis and pneumonia were the main reasons for calf death. However, autopsy findings demonstrated that other factors also caused calf death. This study suggested that seasonal breeding and routine vaccinations are the most important factors for preventing calf death, and improving calf health in high land areas with low temperature.