• Title/Summary/Keyword: Rumen Fluid

Search Result 244, Processing Time 0.024 seconds

PURIFICATION AND PROPERTIES OF EXTRACELLULAR NUCLEASE(S) FROM RUMEN CONTENTS OF BUBALUS BUBALIS

  • Sinha, P.R.;Dutta, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • Extracellular nuclease(s) in buffalo rumen fluid were purified from strained rumen fluid by a procedure involving Seitz filtration, acetone fractionation and gel filtration on Sephadex G-100. The enzyme resolved into two peaks exhibiting both DNase and RNase activities. The molecular weight of enzyme corresponding to peaks I and II were approximately 30,000 and 12,000 respectively. The properties of enzymes from the two peaks, however, were same. Optimum temperature for both DNase and RNase activities was at $50^{\circ}C$. Whereas DNase activity was stable upto $60^{\circ}C$, RNase activity was stable only up to $50^{\circ}C$. DNase activity recorded two pH optima, one at pH 5.5 and the other at pH 7.0. RNase activity recorded a broad pH optimum between pH 6.0-8.0. pH stability of the enzyme coincided with pH optima for both the activities. DNase activity was stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. RNase activity was also stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. Reducing agents stimulated both the activities.

Estimation of In vitro Digestibility of Barley Straw by Using a Homogenized Rumen Fluid and Artificial Saliva Mixed with Nitrogen and Energy Sources

  • Chaudhry, Abdul S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.13-16
    • /
    • 1998
  • A $2{\times}2{\times}4$ factorial study was conducted to examine the possibility of improving estimates of in vitro digestibility, using untreated (UBS) and ammonia-treated (ABS) barley straw, through homogenization of rumen fluid (RF) and by additions of urea (U) and casein (C) as N sources and Xylose + Glucose (XG) as energy sources into artificial saliva. Digestibiltiy of ABS was significantly greater than that of UBS (p < 0.001). There was a significant decrease in digestibility when additions (U, UC, UCXG) were compared with the control (p < 0.001). A 2-way interaction between RF and straw type was significant (p < 0.05) for dry matter digestibility (DMD). Homogenization of RF increased DMD of ABS (p < 0.05) whereas it decreased DMD of UBS (p > 0.05). The study showed that addition of N alone or in combination with energy sources was not better than control, rather the reverse, digestion was inhibited by a combination of U and casein (UC). It was concluded that sufficient N and branched chain fatty acids were supplied in the inoculum from sheep fed high protein grass cubes to support the growth of cellulolytic microbes during in vitro incubation. Further studies are, however, required to explore the potential of homogenization in improving the in vitro method to estimate digestibility of cereal straws.

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

  • Nguyen, S.H.;Li, L.;Hegarty, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.807-813
    • /
    • 2016
  • Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as $NaNO_3$) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in vitro.

Effects of Feeding High- and Low- Forage Diets Containing Different Forage Sources on Rumen Fermentation Characteristics and Blood Parameters in Non-Pregnant Dry Holstein Cows

  • Peng, Jing Lun;Kim, Byong Wan;Lee, Bae Hun;Nejad, Jalil Ghassemi;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This research was conducted to investigate the effects of feeding high and low forage diets with different forage sources on rumen fermentation characteristics and blood parameters of Holstein cows during the dry period. Eight Holstein cows were completely randomized assigned to two groups and repeated measurement was utilized in the analysis. Cows in two treatments were fed with diets with high (F:C = 70:30, 70F; forage source: mixed-sowing whole crop barley and Italian ryegrass silage, BIRG) and low (F:C = 55:45, 55F; forage source: tall fescue hay, TF) forage level. Rumen fluid pH was higher in 70F group. Levels of acetic acid, propionic acid, and butyric acid showed a similar pattern: from the lowest value at 07:30 h to the highest at 10:30 h and then decreased in both groups. The ratio of acetic acid to propionic acid was significantly higher (p < 0.05) in 55F group at 09:30 and 10:30 h. Rumen fluid $NH_3-N$ concentrations were significantly higher (p < 0.05) in 70F group at 09:30 and 10:30 h. Blood urea nitrogen was significantly higher (p < 0.05) in 70F group. It was concluded that BIRG based diet with a high forage level had no adverse effects on rumen fermentation, some blood chemical parameters, and immune system in dry Holstein cows and could be used as a forage source instead of imported TF.

Changes in the ruminal fermentation and bacterial community structure by a sudden change to a high-concentrate diet in Korean domestic ruminants

  • Lee, Mingyung;Jeong, Sinyong;Seo, Jakyeom;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.92-102
    • /
    • 2019
  • Objective: To investigate changes in rumen fermentation characteristics and bacterial community by a sudden change to a high concentrate diet (HC) in Korean domestic ruminants. Methods: Major Korean domestic ruminants (each of four Hanwoo cows; $545.5{\pm}33.6kg$, Holstein cows; $516.3{\pm}42.7kg$, and Korean native goats; $19.1{\pm}1.4kg$) were used in this experiment. They were housed individually and were fed ad libitum with a same TMR (800 g/kg timothy hay and 200 g/kg concentrate mix) twice daily. After two-week feeding, only the concentrate mix was offered for one week in order to induce rapid rumen acidosis. The rumen fluid was collected from each animals twice (on week 2 and week 3) at 2 h after morning feeding using an oral stomach tube. Each collected rumen fluid was analyzed for pH, volatile fatty acid (VFA), and $NH_3-N$. In addition, differences in microbial community among ruminant species and between normal and an acidosis condition were assessed using two culture-independent 16S polymerase chain reaction (PCR)-based techniques (terminal restriction fragment length polymorphism and quantitative real-time PCR). Results: The HC decreased ruminal pH and altered relative concentrations of ruminal VFA (p<0.01). Total VFA concentration increased in Holstein cows only (p<0.01). Terminal restriction fragment length polymorphism and real-time quantitative PCR analysis using culture-independent 16S PCR-based techniques, revealed rumen bacterial diversity differed by species but not by HC (p<0.01); bacterial diversity was higher in Korean native goats than that in Holstein cows. HC changed the relative populations of rumen bacterial species. Specifically, the abundance of Fibrobacter succinogenes was decreased while Lactobacillus spp. and Megasphaera elsdenii were increased (p<0.01). Conclusion: The HC altered the relative populations, but not diversity, of the ruminal bacterial community, which differed by ruminant species.

INTRACELLULAR AMINO ACID PROFILE OF RUMEN BACTERIA AS INFLUENCED BY UREA FEEDING AND ITS DURATION

  • Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.619-622
    • /
    • 1993
  • Rumen bacterial amino acids in sheep on urea diet were monitored to assess a possible change in amino acid synthesis as a long term response to high rumen ammonia environment. A sheep was fed a semipurified diet with soybean meal, followed by a diet with urea as a main nitrogen source. Mixed rumen bacteria were harvested from ruminal fluid taken 3 h after feeding (twice in soybean meal feeding and 6 times in urea feeding) and fractionated as cell wall, proteins and protein-free cell supernatant of monitor amino acids in each fraction. Ruminal ammonia concentration at the sampling ranged from 5.7 to 39.5 mgN/dl. Cell wall and protein fractions of mixed rumen bacteria were stable in their amino acid composition regardless of nitrogen sources of diet and the feeding duration. However, protein-free cell supernatant fraction showed a higher alanine proportion with urea feeding (18.6 and 28.2 molar % of alanine for samples from sheep fed soybean meal and urea, respectively) and its duration (20.6 and 32.9 molar % for samples from sheep on urea diet for 1 and 65 days, respectively). Total free amino acid level of bacteria was depressed in the initial period of urea feeding but restored on 65th day of the feeding. These results suggest that an alanine synthesizing system may develop in rumen bacteria as urea feeding becomes longer.

Recent insight and future techniques to enhance rumen fermentation in dairy goats

  • Mamuad, Lovelia L.;Lee, Sung Sill;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1321-1330
    • /
    • 2019
  • Recent development of novel techniques in systems biology have been used to improve and manipulate the rumen microbial ecosystem and gain a deeper understanding of its physiological and microbiological interactions and relationships. This provided a deeper insight and understanding of the relationship and interactions between the rumen microbiome and the host animal. New high-throughput techniques have revealed that the dominance of Proteobacteria in the neonatal gut might be derived from the maternal placenta through fetal swallowing of amniotic fluid in utero, which gradually decreases in the reticulum, omasum, and abomasum with increasing age after birth. Multi "omics" technologies have also enhanced rumen fermentation and production efficiency of dairy goats using dietary interventions through greater knowledge of the links between nutrition, metabolism, and the rumen microbiome and their effect in the environment. For example, supplementation of dietary lipid, such as linseed, affects rumen fermentation by favoring the accumulation of ${\alpha}$-linolenic acid biohydrogenation with a high correlation to the relative abundance of Fibrobacteriaceae. This provides greater resolution of the interlinkages among nutritional strategies, rumen microbes, and metabolism of the host animal that can set the foundation for new advancements in ruminant nutrition using multi 'omics' technologies.

Effects of different amylose to amylopectin ratios on rumen fermentation and development in fattening lambs

  • Zhao, Fangfang;Ren, Wen;Zhang, Aizhong;Jiang, Ning;Liu, Wen;Wang, Faming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1611-1618
    • /
    • 2018
  • Objective: The objective of this experiment was to examine the effects of different amylose/amylopectin ratios on rumen fermentation and development of fattening lambs. Methods: Forty-eight 7-day-old male Small-tailed Han sheep${\times}$Northeast fine wool sheep were randomly assigned to four treatments of dietary amylose/amylopectin ratios (0.12, 0.23, 0.24, and 0.48 in tapioca starch, corn starch, wheat starch and pea starch diets, respectively). Three lambs from each treatment were slaughtered at 21, 35, 56, and 77 days of age to determine the rumen fermentation and development. Results: Compared with tapioca starch diet, the pea starch diet significantly increased the concentration of ammonia nitrogen in the ruminal fluid of lambs but significantly decreased the bacterial protein content. At 56 and 77 d, the rumen propionate concentration tended to be greatest in the tapioca starch group than in other groups. The rumen butyrate concentration was the greatest in lambs fed on pea starch compared with those fed on other starch diets. Furthermore, the pea starch diet significantly stimulated rumen development by increasing the papillae height, width and surface area in the rumen ventral or dorsal locations in lambs. However, different amylose/amylopectin ratios diets did not significantly affect the feed intake, body weight, average daily gain, the relative weight and capacity of the rumen in lambs with increasing length of trial periods. Conclusion: Lambs early supplemented with a high amylose/amylopectin ratio diet had favourable morphological development of rumen epithelium, which was not conducive to bacterial protein synthesis.

Effects of Dietary Nitrogen Sources on Fiber Digestion and Ruminal Fluid Characteristics in Sheep Fed Wheat Straw

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1374-1382
    • /
    • 2001
  • Fifteen Inner Mongolian wethers with permanent ruminal and duodenal cannulas were used to study the effects of dietary rumen-undegradable protein (RUP) to rumen-degradable protein (RDP) ratios or protein sources on fiber digestion in the gastrointestinal tract and ruminal fluid characteristics. Fiber digestion and ruminal fermentation were not affected (p>0.05) by dietary RUP to RDP ratios (from 1.54 to 0.72). Soybean meal supplementation improved ruminal digestion. Fish meal supplementation increased (p<0.05) the ruminal degradability of fiber. The different RUP to RDP ratios (from 1.54 to 0.72) did not influence (p>0.05) ruminal fluid pH, but there were differences (p<0.05) in ruminal fluid $NH_3-N$ concentration because of urea replacement. Soybean meal as a dietary protein source decreased (p<0.05) ruminal fluid pH and increased (p<0.05 or p<0.01) $NH_3-N$, acetate, propionate and butyrate concentrations in the rumen. Fish meal as a dietary protein source decreased (p<0.05 or p<0.01) ruminal $NH_3-N$ and acetate concentrations and increased (p<0.05) ruminal propionate concentration. It can be concluded that dietary protein sources have more significant effect on fiber digestion and ruminal fermentation than different dietary RUP to RDP ratios, when the dietary crude protein requirements of growing sheep are satisfied.