• Title/Summary/Keyword: Rumen Fermentation

Search Result 516, Processing Time 0.027 seconds

Effects of bamboo leaf extract on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows

  • Li, Yi;Fang, Luoyun;Xue, Fuguang;Mao, Shengyong;Xiong, Benhai;Ma, Zhu;Jiang, Linshu
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1784-1793
    • /
    • 2021
  • Objective: An experiment was conducted to evaluate the effects of bamboo leaf extract (BLE) on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows. Methods: The experiment comprised a 14-day adaptation period and a 21-day experimental period and was conducted in a high-temperature and humidity environment (daily mean ambient temperature = 33.5℃±1.3℃; daily mean relative humidity = 64.9%±0.8%, daily mean temperature-humidity index = 86.2±0.4). Twelve Holstein dairy cows were randomly allocated into two groups. A total mixed ration supplemented with BLE at 0 (CON) and 1.3 g/kg dry matter (DM) were fed, respectively. Feed intake and milk yield were recorded daily. Milk samples were collected on 1, 11, and 21 d of the experimental period to analyze milk performance. Rumen fluid samples were collected on 21 d of the experimental period to analyze rumen fermentation parameters and rumen bacterial communities. Results: Compared with the control group, supplementation of BLE increased milk yield (p<0.01), milk fat yield (p = 0.04), 4% fat-corrected milk (p<0.01) and milk fat content (p<0.01); reduced somatic cell count (p<0.01). No differences in DM intake and milk protein or lactose content were observed between two groups. Supplementation of BLE also increased the rumen total volatile fatty acid (p<0.01), acetate (p<0.01), butyrate (p<0.01), and valerate (p = 0.05) concentrations. However, no significant effects were observed on rumen pH, ammonia nitrogen, propionate, acetate/propionate ratio, isobutyrate, or isovalerate. Furthermore, BLE increased the rumen bacterial abundance and the diversity of the rumen bacterial community. The BLE reduced the Firmicutes/Bacteroidetes abundance ratio and increased the abundances of Butyrivibrio_2 (p<0.01) and Ruminococcus_2 (p<0.01). Conclusion: The BLE supplementation at 1.3 g/kg DM could improve production performance and rumen fermentation in dairy cows during heat stress.

Effects of short-term fasting on in vivo rumen microbiota and in vitro rumen fermentation characteristics

  • Kim, Jong Nam;Song, Jaeyong;Kim, Eun Joong;Chang, Jongsoo;Kim, Chang-Hyun;Seo, Seongwon;Chang, Moon Baek;Bae, Gui-Seck
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.776-782
    • /
    • 2019
  • Objective: Fasting may lead to changes in the microbiota and activity in the rumen. In the present study, the effects of fasting on rumen microbiota and the impact of fasting on in vitro rumen fermentation were evaluated using molecular culture-independent methods. Methods: Three ruminally cannulated Holstein steers were fed rice straw and concentrates. The ruminal fluids were obtained from the same steers 2 h after the morning feeding (control) and 24 h after fasting (fasting). The ruminal fluid was filtrated through four layers of muslin, collected for a culture-independent microbial analysis, and used to determine the in vitro rumen fermentation characteristics. Total DNA was extracted from both control and fasting ruminal fluids. The rumen microbiota was assessed using denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction. Microbial activity was evaluated in control and fasting steers at various intervals using in vitro batch culture with rice straw and concentrate at a ratio of 60:40. Results: Fasting for 24 h slightly affected the microbiota structure in the rumen as determined by DGGE. Additionally, several microorganisms, including Anaerovibrio lipolytica, Eubacterium ruminantium, Prevotella albensis, Prevotella ruminicola, and Ruminobacter amylophilus, decreased in number after fasting. In addition, using the ruminal fluid as the inoculum after 24 h of fasting, the fermentation characteristics differed from those obtained using non-fasted ruminal fluid. Compared with the control, the fasting showed higher total gas production, ammonia, and microbial protein production (p<0.05). No significant differences, however, was observed in pH and dry matter digestibility. Conclusion: When in vitro techniques are used to evaluate feed, the use of the ruminal fluid from fasted animals should be used with caution.

Fermentation Characteristics of Large-scale Coenzyme Q10 Expressing Rhodobacter spharoides in Rumen Simulated Continuous Culture (RSCC) System (Coenzyme Q10 다량 발현 미생물을 이용한 Rumen Simulation Continuous Culture (RSCC) System 반추위 내 미생물 발효 특성에 대한 연구)

  • Bae, G.S.;Yeo, J.M.;Chang, M.B.;Kim, J.N.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.139-151
    • /
    • 2017
  • This study was conducted to confirm the rumen fermentation characteristics of large-scale CoenzymeQ10(CoQ10) producing bacteria R. spharoides in rumen. We conducted in vitro continuous culture test to investigate the characteristics of rumen fermentation with 5% R. spharoides as a direct fed microorganism. A rumen microbial fermentation characteristic has stability at after 12 days for 15 day of experimental period. pH value, NH3-N, microbial protein synthesis, ADF digestibility and NDF digestibility were not shown significantly differences between control and treatment. However, UDP was significantly higher in treatment than control (p<0.05). CoQ10 concentration was 336.0mg/l with 5% R. spharoides. On the other hands, CoQ10 was not detected without R. spharoides. Our study was shown that R. spharoides can produce CoQ10 in rumen environment without harmful effects on rumen fermentation parameter. CoQ10 in rumen may transfer into cow milk through cow metabolism. This strategy might be helpful for producing functional dairy cow milk.

Effects of Rumen pH on Degradation Kinetics and Fermentation Indices of Corn Silage Ensiled with Antifungal and Carboxylesterase Producing Inoculants

  • Chang, Hong Hee;Paradhipta, Dimas Hand Vidya;Lee, Seong Shin;Lee, Hyuk Jun;Joo, Young Ho;Min, Hyeong Gyu;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.131-137
    • /
    • 2020
  • The present study investigated effects of antifungal and carboxylesterase inoculant on rumen fermentation with different rumen pH. Corn silage was treated without inoculant (CON) and with a mixed Lactobacillus brevis 5M2 and L. buchneri 6M1 (MIX). Rumen fluid was collected from two cannulated Hanwoo heifers before morning feeding (high rumen pH at 6.70) and 3 h after feeding (low rumen pH at 6.20). Dried corn silage was incubated in the rumen buffer (rumen fluid + anaerobic culture medium at 1:2 ratio) for 48 h at 39℃. Eight replications for each treatment were used along with two blanks. Both in a high and a low rumen pH, MIX silages presented higher (p<0.05) the immediately degradable fraction, the potentially degradable fraction, total degradable fraction, and total volatile fatty acid (VFA) than those of CON silages. Incubated corn silages in a low rumen pH presented lower (p<0.05) total degradable fraction, ammonia-N, total VFA (p=0.061), and other VFA profiles except acetate and propionate, than those in a high rumen pH. The present study concluded that application of antifungal and carboxylesterase inoculant on corn silage could improve degradation kinetics and fermentation indices in the rumen with high and low pH conditions.

Effects of different dietary ratio of metabolizable glucose and metabolizable protein on growth performance, rumen fermentation, blood biochemical indices and ruminal microbiota of 8 to 10-month-old dairy heifers

  • Sun, Jie;Xu, Jinhao;Ge, Rufang;Wang, Mengzhi;Yu, Lihuai;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1205-1212
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effects of different dietary ratio of metabolizable glucose (MG) to metabolizable protein (MP) on growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of 8 to 10-month-old heifers. Methods: A total of 24 Holstein heifers weighing an average of 282.90 kg (8 month of age) were randomly assigned to four groups of six. The heifers were fed one of four diets of different dietary MG/MP (0.97, 1.07, 1.13, and 1.26). Results: The results showed that the ratio of MG/MP affected the growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of heifers. The average daily gain of heifers was enhanced by increasing the ratio of MG/MP (p<0.05). The concentration of blood urea nitrogen, cholesterol, and low density lipoprotein cholesterol as well as the concentration of total volatile fatty acid in the rumen fluid of heifers decreased with the improvement in the ratio of dietary MG/MP (p<0.05). However, the relative amount of Ruminococcus albus and Butyrivibrio fibrisolvens in the rumen of heifers was increased significantly (p<0.05) when the dietary MG/MP increased. At the same time, with the improvement in dietary MG/MP, the amount of Fibrobacter succinogenes increased (p = 0.08). Conclusion: A diet with an optimal ratio (1.13) of MG/MP was beneficial for the improvement of growth, rumen fermentation, dietary protein and energy utilization of 8 to 10-month-old dairy heifers in this experiment.

Effect of flaking on the digestibility of corn in ruminants

  • Kang, Hamin;Lee, Mingyung;Jeon, Seoyoung;Lee, Sang Moon;Lee, Ju Hwan;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1018-1033
    • /
    • 2021
  • In this study, we aimed to assess the effect of flaking on the nutrient digestibility of corn grain in ruminants. In this regard, in vitro rumen fermentation, in situ rumen degradability, and in vivo metabolic experiments were performed. The automated gas production technique was used for the in vitro fermentation experiments. Six types of corn flakes with various degrees of gelatinization (32%, 41%, 48%, 66%, 86%, and 89%) were ground and incubated in rumen fluid to measure rumen fermentation characteristics and digestion rate. The in situ degradability of ground corn, whole corn, and corn flakes with 62% and 66% gelatinization was measured by incubation in the rumen of two cannulated Holstein cows. In vivo metabolic experiments were performed using 12 crossbred goats (29.8 ± 4.37 kg) using a 3 × 3 Latin square design. The dietary treatments consisted of ground corn and flaked corn with 48% or 62% gelatinization. In vitro experiments showed that as the degree of gelatinization increased, the digestion rate increased linearly, while the discrete lag time decreased linearly (p < 0.05). The effective rumen dry matter degradability, determined by in situ fermentation, was 37%p lower in corn flakes than ground corn, assuming a passage rate of 6%/h (p < 0.01), and there was no difference between the two flakes. In the in vivo experiment, there was no difference in dry matter intake, average daily gain, feed efficiency, and nitrogen utilization among the treatment groups (p > 0.05); however, the crude fat digestibility was lower for corn flakes than for ground corn (p < 0.05). To summarize, the rate of fermentation of corn flakes increased as the degree of gelatinization increased. However, non-ground corn flakes had lower rumen digestibility and did not improve in vivo apparent nutrient digestibility, compared with ground corn. In contrast to the assumption that flaked corn provides more energy to ruminant animals than ground corn, we conclude that the digestibility and energy value of corn flakes are lower than those of ground corn if mastication does not sufficiently reduce the particle size of corn flakes.

Effects of Dietary Acidogenicity Values on Rumen Fermentation Characteristics and Nutrients Digestibility

  • Choi, Y.J.;Lee, Sang S.;Song, J.Y.;Choi, N.J.;Sung, H.G.;Yun, S.G.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1625-1633
    • /
    • 2003
  • This study was conducted to observe effects of dietary acidogenicity value (AV) on rumen fermentation characteristics and nutrients digestibility. The AV of feedstuffs was based on the dissolution of Ca from $CaCO_3$ powder added at the end of a 24 h in vitro fermentation. Three diets were formulated to be iso-energetic and iso-nitrogenous with different AV. Two experiments were involved in this study. In experiment 1, it appears that pH, $NH_3-N$ concentration and A:P ratio tended to decrease, but gas production, VFA production and DM disappearance tended to increase with increasing dietary AV. In experiment 2, the rumen pH tended to decrease in order of high AV>medium AV>low AV treatment, respectively. There were no significant effects of dietary AV on $NH_3-N$ concentration, enzyme activity and nutrient digestibility. In addition, total VFA and individual VFA concentrations tended to increase with increasing dietary AV without significance. In fact, we hypothesized that different dietary AV would affect rumen fermentation and nutrients digestibility because dietary AV was adjusted with fermentable carbohydrate sources. The present results indicate that differences in dietary AV between treatments were too small to affect rumen fermentation and its effects were minimal.

Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

  • Nguyen, S.H.;Li, L.;Hegarty, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.807-813
    • /
    • 2016
  • Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as $NaNO_3$) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in vitro.

Increasing the Flow of Protein from Ruminal Fermentation - Review -

  • Wallace, R.J.;Newbold, C.J.;Bequette, B.J.;MacRae, J.C.;Lobley, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.885-893
    • /
    • 2001
  • This review summarizes some recent research into ways of improving the productivity of ruminal fermentation by increasing protein flow from the rumen and decreasing the breakdown of protein that results from the action of ruminal microorganisms. Proteinases derived from the plant seem to be of importance to the overall process of proteolysis in grazing animals. Thus, altering the expression of proteinases in grasses may be a way of improving their nutritive value for ruminants. Inhibiting rumen microbial activity in ammonia formation remains an important objective: new ways of inhibiting peptide and amino acid breakdown are described. Rumen protozoa cause much of the bacterial protein turnover which occurs in the rumen. The major impact of defaunation on N recycling in the sheep rumen is described. Alternatively, if the efficiency of microbial protein synthesis can be increased by judicious addition of certain individual amino acids, protein flow from ruminal fermentation may be increased. Proline may be a key amino acid for non-cellulolytic bacteria, while phenylalanine is important for cellulolytic species. Inhibiting rumen wall tissue breakdown appears to be an important mechanism by which the antibiotic, flavomycin, improves N retention in ruminants. A role for Fusobacterium necrophorum seems likely, and alternative methods for its regulation are required, since growth-promoting antibiotics will soon be banned in many countries.

Recent insight and future techniques to enhance rumen fermentation in dairy goats

  • Mamuad, Lovelia L.;Lee, Sung Sill;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1321-1330
    • /
    • 2019
  • Recent development of novel techniques in systems biology have been used to improve and manipulate the rumen microbial ecosystem and gain a deeper understanding of its physiological and microbiological interactions and relationships. This provided a deeper insight and understanding of the relationship and interactions between the rumen microbiome and the host animal. New high-throughput techniques have revealed that the dominance of Proteobacteria in the neonatal gut might be derived from the maternal placenta through fetal swallowing of amniotic fluid in utero, which gradually decreases in the reticulum, omasum, and abomasum with increasing age after birth. Multi "omics" technologies have also enhanced rumen fermentation and production efficiency of dairy goats using dietary interventions through greater knowledge of the links between nutrition, metabolism, and the rumen microbiome and their effect in the environment. For example, supplementation of dietary lipid, such as linseed, affects rumen fermentation by favoring the accumulation of ${\alpha}$-linolenic acid biohydrogenation with a high correlation to the relative abundance of Fibrobacteriaceae. This provides greater resolution of the interlinkages among nutritional strategies, rumen microbes, and metabolism of the host animal that can set the foundation for new advancements in ruminant nutrition using multi 'omics' technologies.