• Title/Summary/Keyword: Rumen Characteristics

Search Result 271, Processing Time 0.028 seconds

Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle

  • Wann, Chinda;Wanapat, Metha;Mapato, Chaowarit;Ampapon, Thiwakorn;Huang, Bi-zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1153-1160
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effect of bamboo grass (Tiliacora triandra, Diels) pellet (Bamboo-Cass) supplementation on feed intake, nutrient digestibility, rumen microbial population and methane production in Thai native beef cattle. Methods: Four Thai native beef cattle bulls ($190{\pm}2kg$) were randomly allotted to four respective dietary treatments in a $4{\times}4$ Latin square design. Treatments were the varying levels of Bamboo-Cass supplementation at 0, 50, 100, and 150 g/head/d, respectively. Rice straw was fed ad libitum and the concentrate offered at 0.5% of body weight. Results: Under this experiment, the findings revealed that acetate and butyrate production were decreased (p<0.05), propionate increased (p<0.05), whilst ruminal $NH_3-N$ concentration was decreased (p<0.05) by supplementation of Bamboo-Cass at 150 g/head/d. Moreover, rice straw intake, and microbial population were linearly increased (p<0.05), while methane production was decreased (p<0.05). Conclusion: The results from the present study indicate that supplementation of Bamboo-Cass at 150 g/head/d significantly enhanced feed intake, decreased protozoa and increased bacterial population, rumen fermentation efficiency while decreased methane production. Therefore, Bamboo-Cass as a supplement is promising as a rumen enhancer in beef cattle fed on rice straw.

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

Effects of Persimmon (Diospros kaki L.) Vinegar as a Dietary Supplement on Feed Intake, Digestibility, and Ruminal Fermentation Indices in Sheep

  • Shin, J.H.;Ko, Y.D.;Kim, B.W.;Kim, S.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1578-1586
    • /
    • 2010
  • This study estimated the effect of fermented persimmon (Diospros kaki L.) extract (FPE) supplement on feed intake, digestibility, nitrogen (N) balance, and rumen fermentation characteristics in sheep. Five male sheep (Corriedale${\times}$Polwarth) with average body weight of $48.6{\pm}1.3\;kg$ were housed in metabolism crates and assigned to a 5${\times}$5 Latin square design with five consecutive 20-d periods which consisted of 14-d adaptation and 6-d data collection. The sheep were fed ad libitum a diet containing concentrate and rice straw (3:7). The five treatments were FPE supplemented at 0 (Control), 5, 10, 20, and 30 g/kg of concentrate. Intakes of dry matter (DM, p<0.01), organic matter (OM, p<0.01), neutral detergent fiber (NDF, p<0.05), acid detergent fiber (ADF, p<0.05), and nitrogen-free extract (NFE, p<0.01) increased quadratically with increasing intake of FPE supplement and maximized (p<0.05) at 10 g/kg FPE. The digestibilities of DM (p<0.05), OM (p<0.05), crude protein (p<0.01), and NFE (p<0.01) increased quadratically with increasing amount of FPE supplement, and sheep fed 5 and 10 g/kg diets had greater (p<0.05) DM, OM, and NFE digestibilites than the Control treatment. By increasing FPE supplement concentration, N intake (p<0.01) and fecal N (p<0.05) increased linearly, whereas retained N (p<0.05) and retained N ratio (p<0.05) increased quadratically. The retained N was maximized (p<0.05) in sheep fed 5 and 10 g/kg diets. The mean rumen pH was not affected by FPE supplement, but there was a quadratic increase (p<0.05) of mean rumen ammonia N concentration and a linear increase (p<0.01) in mean rumen total volatile fatty acid (VFA) and acetate concentrations. The mean concentration of rumen propionate in sheep fed all FPE supplemented diets was greater (p<0.05) than the Control, but the mean ratios of rumen acetate to propionate in sheep fed 5 and 10 g/kg diets were lower (p<0.05) than that of Control sheep. In conclusion, FPE supplemented at 5-10 g/kg of concentrate improved feed intake, the digestibilites of OM and NFE, N metabolism, and rumen fermentation indices of sheep.

Effects of the Processing Methods of Forage Rye (Secale cereale) on Rumen Fermentation Characteristics and Greenhouse Gas Emissions In Vitro of Hanwoo (호밀 조사료 가공방법이 한우의 반추위 내 발효특성과 온실가스 발생량에 미치는 영향)

  • Ji Yoon Kim;Seung Min Jeong;Young Ho Joo;Chang Hyun Baeg;Bu Gil Choi;Arrynda Rachma Dyasti Wardani;Sam Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.99-105
    • /
    • 2024
  • This study was conducted to estimate the effects of the forage process on rumen fermentation characteristics and greenhouse gas emissions of rye. Rye was grown at the Taeyoung Livestock farm and harvested at the heading stage. The harvested rye (5 kg) was sub-sampled for fresh forage, hay, and silage in triplicates. The sub-sampled rye was freeze-dried or air-dried for fresh forage or rye hay, respectively. For rye silage, the sub-sampled rye forage was ensiled into a 10 L mini bucket silo and stored for 90 days. For 72 h rumen incubation, each forage (0.3 g) was placed into the incubation bottle with the rumen mixture (30 mL) in quadruplicates. After the incubation, total gas was measured and sub-sampled for CO2 and CH4 analyses, and the bottle content was centrifuged for in vitro digestibilities of dry matter (IVDMD) and neutral detergent fiber (IVNDFD), and rumen fermentation characteristics. Silage had higher crude protein, crude ash, and acid detergent fiber concentrations than fresh forage and hay but lower non-fiber carbohydrates and relative feed value (p<0.05). And, silage had higher lactic acid bacteria than the other forages but lower pH (p<0.05). After 72 h incubation in the rumen, fresh forage had higher IVDMD and butyrate content than the other forages (p<0.05). However, silage had higher rumen pH and propionate content than the other forages but lower A:P ratio (p<0.05). Regarding greenhouse gases, silage had lowest total gas (mL/g DMD and NDFD) and CH4 (mL/g DMD and NDFD) emissions, while fresh forage had lowest CO2 (mL/g DMD) emission (p<0.05). Therefore, this study concluded that the ensiling process of rye can effectively mitigate greenhouse gas emissions of Hanwoo.

Substitution effects of rice for corn grain in total mixed ration on rumen fermentation characteristics and microbial community in vitro

  • Yoo, Daekyum;Hamid, Muhammad Mahboob Ali;Kim, Hanbeen;Moon, Joonbeom;Song, Jaeyong;Lee, Seyoung;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.638-647
    • /
    • 2020
  • This study determined the substitution effects of rice for corn as the main grain source in a total mixed ration (TMR). In vitro rumen fermentation characteristics and microbes were assessed using two experimental diets. Diets included 33% dry matter (DM) of either corn (Corn TMR) or rice grains (Rice TMR). In a 48-h in vitro incubation, DM digestibility (IVDMD), neutral detergent fiber degradability (IVNDFD), crude protein digestibility (IVCPD), volatile fatty acids (VFAs), pH and ammonia nitrogen (NH3-N) were estimated. Gas production has been calculated at 3, 6, 12, 24 and 48 h. Our results indicate that the gas production, VFAs, IVDMD, and IVNDFD of Rice TMR were higher than those of Corn TMR (p < 0.05). Ruminal pH and total fungi were significantly higher in Corn TMR (p < 0.05) than in Rice TMR; however, NH3-N and IVCPD were not affected by treatment type. In conclusion, substituting rice for corn at 33% DM in TMR appears to have no negative effects on in vitro rumen fermentation characteristics. Therefore, rice grains are an appropriate alternative energy source in early fattening stage diets of beef cattle.

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Influence of Dry Roasting on Rumen Protein Degradation Characteristics of Whole Faba Bean (Vicia faba) in Dairy Cows

  • Yu, P.;Holmes, J.H.G.;Leury, B.J.;Egan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • Whole faba beans (WFB) were dry roasted at different temperatures (110, 130, $150^{\circ}C$) for 15, 30, 45 minutes to determine the optimal heating conditions of time and temperature to increase nutritional value. Ruminant degradation characteristics of crude protein (CP) of WFB were determined by the nylon bag incubation technique in dairy cows fed 60% hay and 40% concentrate. Measured characteristics of crude protein (CP) were soluble (washable) fraction (S), undegradable fraction (U), lag time (T0), potentially degradable fraction (D) and the rate of degradation (Kd) of insoluble but degradable fraction. Based on measured characteristics, percentage bypass crude protein (%BCP) and bypass crude protein (BCP in g/kg) were calculated. Degradability of CP was reduced by dry roasting (p < 0.01). S was reduced rapidly with increasing time and temperature, from 49.0% in the raw WFB (RWFB) to 26.3% in $150^{\circ}C/45$ min. D varied from 50.7% in RWFB to 73.7% in $150^{\circ}C/45^{\prime}$. U varied from 0% in $130^{\circ}C/45^{\prime}$, $150^{\circ}/30^{\prime}$ and $150^{\circ}/45^{\prime}$ to 0.66% in $110^{\circ}/45^{\prime}$ (0.24% for the RWFB). Lag time (T0) varied from 1.58 h in $130^{\circ}C/30^{\prime}$ to 2.40 h in $150^{\circ}C/45^{\prime}$ (1.87 h for RWFB). Kd varied from 24.2% in the $110^{\circ}C/30^{\prime}$ to 4.3% in $150^{\circ}C/45^{\prime}$ (21.4% for the RWFB). Kd was significantly reduced with time and temperature. All these effects resulted in increasing % BCP from 8.9% in the $110^{\circ}C/45^{\prime}$, 11.3% in the RWFB to 43.1% in the $150^{\circ}C/45$. Therefore BCP increased from 31.3 and 39.9 to 148.4 g/kg respectively. Both %BCP and BCP at $150^{\circ}C/45$ increased nearly 4 times over the raw faba beans. The effects of dry roasting temperature and time on %BCP and BCP seemed to be linear up to the highest values tested. Therefore no optimal dry roasting conditions of time and temperature could be determined at this stage. It was concluded that dry roasting was effective in shifting crude protein degradation from rumen to intestine to reduce unnecessary nitrogen (N) loss in the rumen. To determine the optimal treatment, the digestibility of each treatment should be measured in the next trial using mobile bags technique.

Effects of heat stress and rumen-protected fat supplementation on growth performance, rumen characteristics, and blood parameters in growing Korean cattle steers

  • Kang, Hyeok Joong;Piao, Min Yu;Park, Seung Ju;Na, Sang Weon;Kim, Hyun Jin;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.826-833
    • /
    • 2019
  • Objective: This study was performed to evaluate whether hot temperature and rumen-protected fat (RPF) supplementation affect growth performance, rumen characteristics, and serum metabolites in growing stage of Korean cattle steers. Methods: Twenty Korean cattle steers ($230.4{\pm}4.09kg$ of body weight [BW], $10.7{\pm}0.09months$ of age) were divided into a conventional control diet group (n = 10) and a 0.8% RPF supplementation group (n = 10). Steers were fed 1.5% BW of a concentrate diet and 4 kg of tall fescue hay for 16 weeks (July 10 to August 6 [P1], August 7 to September 3 [P2], September 4 to October 1 [P3], October 2 to 30 [P4], of 2015). Results: The mean temperature-humidity index (THI) was higher (p<0.001) in P1 (76.8), P2 (76.3), and P3 (75.9) than in P4 (50.9). The mean THI of P1-3 were within the alert heat stress (HS) category range according to previously reported categories for feedlot cattle, and the mean THI of P4 was under the thermo-neutral range. Neither month nor RPF supplementation affected (p>0.05) average daily gain and gain to feed ratio. Month and RPF supplementation affected concentrations of glucose, albumin, and high-density lipoprotein (HDL); those of albumin and glucose tended to decrease (p<0.10), but HDL concentration increased (p<0.01) by RPF supplementation. Neither month nor RPF affected (p>0.05) ruminal pH, $NH_3-N$, and volatile fatty acid concentrations, whereas the C2:C3 ratio was affected (p<0.05) by month. Conclusion: Korean cattle may not have been significantly affected by alert HS during the growing stage. Growth performance was higher during hotter months, although some changes in blood metabolites were observed. The RPF supplementation affected some blood lipids and carbohydrate metabolites but did not affect growth performance.

STUDY ON THE UTILIZATION OF RICE STRAW BY SHEEP 1. THE EFFECT OF SOYBEAN MEAL SUPPLEMENTATION ON THE VOLUNTARY INTAKE OF RICE STRAW AND RUMINAL FERMENTATION

  • Warly, L.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.687-693
    • /
    • 1992
  • The study was conducted to investigate the effect of soybean meal (SBM) supplementation on the voluntary intake of rice straw and ruminal fermentation characteristics. Balance trials were conducted with three Hapanese Corriedale wethers fed a rice straw alone (control), rice straw supplemented with 75 and 150 g of SBM/day in a $3{\times}3$ latin square design. Voluntary intake of rice straw in sheep fed both levels of SBM supplemented diets was significantly higher (p<0.05) than that in sheep fed control diet. Crude protein digestibility was significantly increased (p<0.05), but organic matter, crude fibre, neutral detergent fibre and acid detergent fibre digestibilities were not affected by SBM supplementation. Nitrogen balance was positive in sheep on both levels of SBM supplemented diets, but negative in animals on the control diet. Rumen ammonia and blood urea-nitrogen concentrations increased (p<0.05) as increasing level of SBM. Total volatile fatty acids, acetate, propionate, butyrate and valerate concentrations in rumen fluid were also significantly increased (p<0.01), but ruminal pH was decreased (p<0.05) by SBM supplementation.

Comparison of in vitro ruminal fermentation between different originated corn grains

  • Kim, Do Hyung;Park, Ha Young;Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.541-548
    • /
    • 2017
  • This study was conducted to compare in vitro rumen fermentation characteristics among corn grains imported from America, Brazil, Argentina and Ukraine A and Ukraine B. Two Holstein steers, each surgically fitted with a ruminal cannula, consuming total mixed ration were used as rumen fluid donors. In vitro rumen fermentation experiments were performed in a completely random design which included a control (no corn) and treatments with 3.0 g of corn from different geographical origins, i.e., America, Brazil, Argentina, and Ukraine A and Ukraine B, respectively. Ruminal pH, ammonia-N, volatile fatty acid (VFA) and total gas production were measured at 0, 1, 3, 6, 12, 24 and 48 h post-incubation, respectively. No differences (p > 0.05) in mean ruminal pH appeared among the treated groups, however, ruminal pH patterns differed; i.e. corn treated groups had dramatically lower pH compared with control during the entire incubation period. Similarly, no different patterns between the groups in ammonia-N (p > 0.05) appeared until 6 h post-incubation. Unexpectedly, higher ammonia-N concentration for control than that for the corn treated groups appeared after 12 h post-incubation despite that for all groups increased. Total VFA was similar between the groups until 6 h post-incubation, but VFA after 12 h post-incubation was different (p < 0.05), i.e. VFA for corn from Argentina, Ukraine A, Ukraine B, and Brazil were comparatively higher than for America. Overall, data in this study showed that the corns of different origins may have different feed values to ruminants despite having similar chemical compositions.