• 제목/요약/키워드: Rule mining

검색결과 481건 처리시간 0.026초

인터넷 문서빈도를 통해 본 도시순위규모에 관한 연구 -미국 10만 이상의 인구를 갖는 도시들을 사례로- (Rank-Size Distribution with Web Document Frequency of City Name : Case study with U.S incorporated places of 100,000 or more population)

  • 홍일영
    • 한국지역지리학회지
    • /
    • 제13권3호
    • /
    • pp.290-300
    • /
    • 2007
  • 본 연구는 인터넷 문서상에 나타나는 도시 지명의 문서 빈도를 통계량으로 도시규모에 대한 분석을 실시하였다. 검색어가 갖는 의미상의 차이에 따른 조건과 검색의 범위를 제약하면서 나타나는 유의적인 차이점들에 대해 분석하였고, 도시규모분포의 상관계수에 대한 분석을 통해 인구와 문서빈도와의 차이점을 분석하였다. 각 도시의 인구와 문서빈도와 상관관계 분석에서는 검색어의 종류를 보다 공간적의 의미로 제약할수록 더 높은 상관관계가 나타났고, 문서의 종류는 상용, 네트워크, 기관의 경우에 있어서 높은 상관관계가 나타났다. 그리고 인구와 문서빈도의 통계량을 이용한 군집분석을 통해서, 인구에 비해 더 많은 혹은 낮은 문서빈도를 보이는 도시들을 파악하였다. 이와 같은 분석은 웹 문서라는 정보통신사회 속에서 반영되는 각 도시의 특성을 분석하는 새로운 방안을 제시한다는 점에서 큰 의미를 갖는다고 할 수 있다.

  • PDF

빈발 항목의 탐색 시간을 단축하기 위한 알고리즘 (An Algorithm for reducing the search time of Frequent Items)

  • 윤소영;윤성대
    • 한국정보통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.147-156
    • /
    • 2011
  • 최근 정보시스템의 활용도가 높아짐에 따라, 많은 데이터를 이용하여 필요한 상품을 빠르게 추출하는 방법들에 대한 연구가 활발히 이루어지고 있다. 숨겨진 패턴을 탐색하는 연관 규칙 탐색 기법들이 많은 관심을 받고 있으며, Apriroi 알고리즘은 대표적인 기법이다. 그러나 Apriori 알고리즘은 반복적인 스캔으로 인한 탐색시간 증가 문제를 가지고 있다. 본 논문에서는 빈발항목의 탐색시간을 단축하기 위한 알고리즘을 제안한다. 제안한 알고리즘은 트랜잭션 데이터베이스를 이용하여 매트릭스를 생성하고 매트릭스에서 트랜잭션들의 평균 항목 개수와 정의한 최소 지지도를 사용하여 빈발 항목을 탐색한다. 트랜잭션의 평균 항목 개수는 트랜잭션의 수를 줄이는데 사용되고 최소 지지도는 항목을 줄이는데 사용된다. 제안한 알고리즘의 성능 평가는 기존 알고리즘과의 탐색시간 비교와 정확도 비교로 이루어진다. 실험 결과는 제안한 알고리즘이 기존의 Apriori와 매트릭스 알고리즘보다 최종 빈발 항목의 추출에서 빠르고 효율적으로 탐색이 이루어지는 것을 확인하였다.

빅데이터 분석을 이용한 문단 내의 감정 예측 (Emotion Prediction of Paragraph using Big Data Analysis)

  • 김진수
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.267-273
    • /
    • 2016
  • 모바일의 확산과 더불어 정형화된 자료뿐만 아니라 다양한 형태의 비정형화된 자료로부터 정보가 생성되고 정보 전달 및 공유가 활발히 이루어지고 있다. 최근에는 다양한 SNS 매체들로부터 생산 및 배포되는 많은 자료들 중에서 유의미한 정보를 추출하는 기술로 빅데이터 기술을 많이 사용하며, 빅데이터 분석 기법 중 하나인 데이터 마이닝 기법을 사용한다. 특히, SNS로부터 수집된 방대하고 다양한 자료들을 이용하여 대중의 집단지성에 표출된 일반적인 감정을 분석하여 다양한 분야에 활용한다. 본 논문에서는 SNS를 통해 작성된 짧은 문단 내 함축된 키워드와 키워드들 간의 연관성을 이용하여 문단에 나타난 감정을 예측하고 사용자별 감정에 따른 적절한 답변이나 예측된 감정과 유사한 상품이나 영화 등 다양한 추천시스템에 사용될 수 있도록 형태소 분석과 변형된 n-gram방법을 혼합하여 효율적인 감정 예측 시스템을 제안한다. 제안된 시스템은 평균 82.25%의 재현율을 보여 기존의 시스템에 비해 더욱 향상된 성능을 보여 주었고, 형태소분석을 통해 의미 있는 키워드 추출에 도움이 될 것으로 기대한다.

개인화 추천 시스템의 예측 정확도 향상을 위한 사용자 유사도 가중치에 대한 비교 평가 (Comparative Evaluation of User Similarity Weight for Improving Prediction Accuracy in Personalized Recommender System)

  • 정경용;이정현
    • 전자공학회논문지CI
    • /
    • 제42권6호
    • /
    • pp.63-74
    • /
    • 2005
  • 전자상거래에서 최근 대부분의 개인화된 추천 시스템들은 협력적 필터링 기술을 적용하고 있다. 이 방법은 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 이때 일반적으로 피어슨 상관계수를 많이 사용한다. 그러나 이 방법은 두 사용자가 공통으로 선호도를 평가한 아이템들이 있을 때만 상관관계를 계산할 수 있으므로 예측의 정확도는 떨어진다. 사용자 유사도 가중치는 사용자의 성향에 맞는 아이템을 예측하는 경우 뿐만 아니라 개인화된 추천 시스템의 성능에 영향을 미칠 수 있다. 본 논문에서는 정보검색 분야의 벡터 유사도, 엔트로피, 역 사용자 빈도, 기본 선호도 평가를 적용하여 유사도 가중치 공식에 대해서 살펴보고, 추천 시스템의 예측 정확도 향상에 대해서도 실험을 통해 확인해 보았다. 실험 결과는 엔트로피를 이용한 유사도 가중치에 기본 선호도 평가를 결합하는 방법이 가장 성능이 우수함을 알 수 있다.

지수적 가중치를 적용한 협력적 상품추천시스템 (A Recommendation System of Exponentially Weighted Collaborative Filtering for Products in Electronic Commerce)

  • 이경희;한정혜;임춘성
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.625-632
    • /
    • 2001
  • 전자상점에서 이루어지는 고객의 구매패턴이 온라인 상에서 데이터베이스화되어, 이를 통하여 고객의 취향에 맞는 상품을 제공할 수 있는 많은 알고리즘이 연구되고 있다. 이러한 알고리즘은 전자상점에서 고객의 개별특성을 고려한 상품을 제공하기 위하여, 고객정보 데이터베이스와 거래정보 데이터베이스로부터 연관규칙 등을 추출하여 사용한다. 그러나 시간의 흐름에 민감한 계절상품이나 특선상품과 같이 전자상점의 거래량에 크게 직결될 수 있는 상품에도 기존의 시간을 고려하지 않은 알고리즘을 적용한다면 추천성공률이 떨어질 것이다. 따라서 본 논문에서는 시간의 영향을 많이 받는 상품추천을 위하여, 최근 전자상점 추천시스템으로 효과적인 아이템 기반 협력알고리즘에 지수적 가중치를 적용한 협력적 여과추천(EWCFR) 알고리즘을 제안한다. 또한 이러한 추천시스템이 대용량의 고객데이터와 상품데이터에 대한 연산을 수행하고 다수의 고객에게 실시간으로 서비스를 제공하여야 하므로, XML기반의 MMDB를 활용한 전자상거래 시스템과 알고리즘을 제안한다.

  • PDF

LiDAR 센서를 활용한 배회 동선 검출 알고리즘 개발 (An Algorithm of Identifying Roaming Pedestrians' Trajectories using LiDAR Sensor)

  • 정은비;유소영
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.1-15
    • /
    • 2017
  • 최근 국제적인 테러 위협이 불특정 다수를 대상으로 발생하고 있으며, 이러한 위협에서 시민을 보호하기 위한 다양한 대책이 논의 중이다. 저렴해진 센서 기술을 활용한 사전 감시 시스템에 대한 요구가 높아지고 있으나, 보행 궤적의 고유 특성 검출 및 상세 분석 연구가 미비한 실정이다. 본 연구에서는 상용화된 보행 동선 솔루션을 활용하여, 삼성역 개찰구에서 코엑스와 직접 연결되는 연결 통로 (3-6번 출구 근처) 일대의 보행 동선 궤적 조사를 수행하였다. 조사된 궤적 자료를 바탕으로, 궤적 자료의 정규화 기법, Clustering 방법을 중심으로 보행 궤적을 유형화하고 배회 동선을 추출하는 분석 방법론을 제시하였다. 분석 결과, 동일 군집내에서 유사성이 크게 떨어지는 보행 궤적의 검출 가능성을 검증하였다.

그래프 이론 기반의 단백질-단백질 상호작용 데이타 분석을 위한 시스템 (An Analysis System for Protein-Protein Interaction Data Based on Graph Theory)

  • 진희정;윤지현;조환규
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권5호
    • /
    • pp.267-281
    • /
    • 2006
  • 단백질-단백질 상호작용(PPI : Protein-Protein Interaction) 데이타는 생물체가 어떠한 메커니즘으로 생명을 유지하는지에 대한 정보를 담고 있다. 질병 연구나 신약 연구를 위해서 PPI 데이타를 이용한 많은 연구들이 이루어지고 있다. 이러한 PPI 데이타의 크기는 Yeast-two-hybrid, Mass spectrometry과 Correlated mRNh expression과 같은 방법들로 인하여 점차 그 증가량이 커지고 있다. 따라서 단백질-단백질 상호작용 데이타의 방대한 양과 복잡한 구조로 인하여 사람이 직접 분석하는 것은 불가능하다. 다행히도 PPI 데이타는 단백질은 노드로, 상호작용은 에지로 표현함으로써 전산학의 그래프 구조로 추상화될 수 있다. 본 논문에서는 방대한 단백질-단백질 상호작용 데이타를 연구자가 다양한 방법으로 손쉽게 분석할 수 있는 워크벤치(workbench) 시스템인 Proteinca (PROTEin INteraction CAbaret)에 대하여 소개한다. Proteinca는 다앙한 데이타베이스의 PPI 데이타를 그래프이론 기반의 분석 기능들을 제공하며, 그래프로 가시화하여 사용자가 직관적으로 이해할 수 있도록 도와준다. 또한, 중력 모델 기반의 간략화 방법을 제공하여 사용자에게 중요 단백질 중심의 가시화를 제공한다.

구매순서를 고려한 개선된 협업필터링 방법론 (Considering Customer Buying Sequences to Enhance the Quality of Collaborative Filtering)

  • 조영빈;조윤호
    • 지능정보연구
    • /
    • 제13권2호
    • /
    • pp.69-80
    • /
    • 2007
  • 고객의 선호도는 시간에 따라 변화하지만 기존 협업필터링기법(Collaborative Filtering : CF)은 정적인 데이터만을 다룬다. 이는 기존 CF 기법이 특정 기간 동안 고객의 구매 여부만 고려할 뿐 고객의 구매순서를 사용하지 않기 때문이다. 따라서 기존 CF 기법은 고객의 동적인 데이터인 구매순서를 고려함으로써 추천의 품질을 높일 가능성이 있다. 본 연구에서는 고객의 구매순서를 활용함으로써 CF 기법의 추천 품질을 향상시키는 새로운 상품추천 방법론을 제안한다. 즉, 군집분석기법인 자기조직화지도(Self-Organizing Map : SOM)를 활용하여 고객의 구매순서를 파악한 후 연관규칙탐사(Association Rule Mining : ARM)를 사용하여 고객들의 구매순서 중 일정 정도의 통계적인 타당성을 갖는 구매순서 패턴을 찾아내어 이를 추천 시에 활용한다. 대형 백화점의 구매자료에 적용하여 제안한 방법론의 효과성을 실험한 결과 제안한 방법론이 기존 CF 기법보다 우수한 추천품질을 가지고 있음이 실증적으로 확인되었다.

  • PDF

머신러닝 기법을 활용한 공장 에너지 사용량 데이터 분석 (Machine Learning Approach for Pattern Analysis of Energy Consumption in Factory)

  • 성종훈;조영식
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권4호
    • /
    • pp.87-92
    • /
    • 2019
  • 본 연구에서는 머신 러닝 기법을 활용하여 공장에서 발생하는 에너지 사용량에 대한 데이터 분석 및 패턴 추출에 대해 다룬다. 통계학이나 기존의 방법들은 몇 가지 물리적 특성을 반영하는 수학적 모델을 구축하는 반면, 머신 러닝을 통한 접근방법은 데이터 학습을 통하여 모델의 계수들을 결정하게 된다. 기존의 방법들은 특정한 구조를 갖는 수학적 모델을 구축해야 한다는 어려움이 있으며 과연 데이터의 특징들을 잘 반영하는지에 대한 의문이 존재했다. 그러나 머신 러닝을 통한 방법은 사람이 구축하기 어려운 작업들을 용이하게 구축한다는 장점을 가지고 있기 때문에 데이터 간의 관계를 파악하기에 더 효율적이라는 장점을 가지고 있다. 공장의 에너지 소비에 직접적으로 영향을 끼치는 요소들이 존재하며 이러한 전력 소비는 시간에 따른 데이터로 나타나게 된다. 각 요소들로부터 발생하는 소비 전력을 계측하고 데이터 베이스를 구축하기 위해 각 요소에 센서를 장착하였다. 취득된 데이터에 대해 전처리 과정 및 통계적인 분석을 거친 뒤, 머신 러닝을 통해 패턴을 분석하는 과정을 거쳤다. 이를 통해 공장에서 발생하는 소비 전력 데이터에 대한 패턴 분석을 진행하였다.

과탐지 감소를 위한 NSA 기반의 다중 레벨 이상 침입 탐지 (Negative Selection Algorithm based Multi-Level Anomaly Intrusion Detection for False-Positive Reduction)

  • 김미선;박경우;서재현
    • 정보보호학회논문지
    • /
    • 제16권6호
    • /
    • pp.111-121
    • /
    • 2006
  • 인터넷이 빠르게 성장함에 따라 네트워크 공격기법이 변화되고 새로운 공격 형태가 나타나고 있다. 네트워크상에서 알려진 침입의 탐지는 효율적으로 수행되고 있으나 알려지지 않은 침입에 대해서는 오탐지(false negative)나 과탐지(false positive)가 너무 높게 나타난다. 또한, 네트워크상에서 지속적으로 처리되는 대량의 패킷에 대하여 실시간적인 탐지와 새로운 침입 유형에 대한 대응방법과 인지능력에 한계가 있다. 따라서 다양한 대량의 트래픽에 대해서 탐지율을 높이고 과탐지를 감소할 수 있는 방법이 필요하다. 본 논문에서는 네트워크 기반의 이상 침입 탐지 시스템에서 과탐지를 감소하고, 침입 탐지 능력을 향상시키기 위하여 다차원 연관 규칙 마이닝과 수정된 부정 선택 알고리즘(Negative Selection Algorithm)을 결합한 다중 레벨 이상 침입 탐지 기술을 제안한다. 제안한 알고리즘의 성능 평가를 위하여 기존의 이상 탐지 알고리즘과 제안된 알고리즘을 수행하여, 각각의 과탐지율을 평가, 제시하였다.