본 논문에서는 5G NR 시스템을 위한 동기 신호를 이용한 cell ID 검출 방법에 대한 성능을 비교하였다. 5G NR(fifth-generation new radio) 시스템의 송신기는 SS/PBCH (synchronization signal/physical broadcast channel) 블록을 송신하며, 수신기는 수신된 SS/PBCH 블록을 이용하여 주파수 및 타이밍 오프셋 (frequency and timing offset)을 추정 할 수 있으며, cell ID (cell identity)는 PSS (primary synchronization signal)와 SSS (secondary synchronization signal)를 통해 검출할 수 있다. 본 논문에서는 cell ID 를 검출할 수 있는 방법으로서 2-stage 디코딩 방법과 결합 최대우도 결정 규칙 (joint maximum-likelihood decision rule: joint ML) 디코딩 방법을 사용하였다. Joint ML 디코딩 방법은 2-stage 디코딩 방법에 비해 더 좋은 검출 성능을 보이지만, 복잡도 측면에서는 2-stage 디코딩 방법이 joint ML 디코딩 방법에 비해 더 낮은 복잡도를 갖는 것을 확인하였다.
학술 문헌 원문에서 발견되는 인용문은 인용에 기초한 학술문헌 자동 요약, 리뷰 논문 자동 생성, 인용문 감성 분석, 인용문 기반 문헌 검색 등 다양한 학술 정보 서비스의 창출을 가능케 한다. 이러한 서비스가 가능하기 위해서는 원문 텍스트로부터 인용문의 자동 인식이 선행되어야 한다. 그러나 인용문의 인식은 인용 표지가 부착되지 않은 암묵 인용문의 존재로 인해 그 처리가 용이하지 않다. 영어의 경우 최근 이에 대한 연구가 집중되고 있으나 한국어 학술 문헌 내 인용문의 자동 인식 연구는 찾기 힘들다. 이 논문은 한국어 인용문을 자동 인식하는 규칙 기반의 방법을 제시하고 다양한 베이스라인 기법들과 인용문 인식 성능을 비교하였다. 제안된 방법은 테스트 셋 내 전체 암묵 인용문의 30%를 약 70%의 정확률로 인식할 수 있었다.
본 연구는 유전자 알고리즘을 IDS에 적용된 오용 탐지 기법을 처음으로 제안하고 구현한 점에서 의미가 있다. 세계적인 대회인 KBD 콘테스트의 데이터를 사용하여 실험하였으며, 그에 따른 가능한 한 같은 환경 하에서 실험을 실시하였다. 실험은 레코드집합을 하나의 유전자로, 즉 하나의 공격패턴으로 간주하고 유전자 알고리즘을 활용하여 진화 시켜 침입 패턴,즉 침입 규칙(Rules)을 생성한다. 데이터 마이닝 기법중 분류(Classification)에 초점을 맞추어 분석과 실험을 하였다. 이 데이터를 중심으로 침입 패턴을 생성하였다. 즉, 오용탐지(Misuse Detection) 기법을 실험하였으며, 생성된 규칙은 침입데이터를 대표하는 규칙로 비정상 사용자와 정상 사용자를 분류하게 된다. 규칙은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model" 이 세가지 모듈에서 각각 상이한 침입 규칙을 생성하게 된다. 규칙 생성의 지속적인 업데이트가 힘든 오용탐지 기법에 지속적으로 성장하며 변화해 가는 규칙을 자동적으로 생성하는 시스템으로서, 생성된 규칙은 430M Test data 집합에서 테스트한 결과 평균 약 94.3%의 탐지율을 보였다. 테스트한 결과 평균 약 94.3%의 탐지율을 보였다.
본 논문은 불특정 화자의 DDD 지역명 인식 실험에 관한 것으로 VQ(Vector Quantization) 방식을 이용하여 실험하였고 인식대상 어휘로는 다이얼링 시스템의 응용을 목적으로 전국 146재의 DDD 지역명을 선정하였다. 특징 파라메타로는 12차 LPC Cepstrum 계수를 사용하여 코우드북을 작성하였으며, 중심점을 찾는 방법으로는 MINSUM 방법과 MINIMAX 방법을 사용하였고 코우드북 작성에는 Splitting rule 3가지를 사용하였다. 코우드북도 Single Section 코우드북과 시간정보를 포함하는 Multi Section 코우드북으로 나누어 작성하였고 Section을 Overlapping 하여가면서 코우드북을 작성하여 실험하였다. 실험 결과 minsum 방법이 minimax 보다 인식률이 좋은 것으로 나타났으며 화자 독립의 경우 약 $90\%$의 인식율을 얻을 수 있었다.
운율구 경계 예측은 대화체 음성합성을 실현하기 위한 주요한 자연언어처리 기술 중 하나이다. 본 논문은 자연스러운 한국어 운율구 경계 예측을 실현하고자 기존의 학습 자질을 대신할 새로운 학습 자질을 제안한다. 이 새로운 자질들은 기존의 학습 자질보다 실제 언어생활에서 운율구 경계 발생에 영향을 미치는 여러 요인을 더 잘 반영한다. 특히, 수작업으로 구축한 운율구 경계 예측 규칙을 이용하여 추출한 학습 자질은 높은 정확도 향상에 이바지한다. 본 논문에서 제안한 새로운 학습 자질을 바탕으로 CRFs(Conditional Random Fields)를 이용하여 운율구 경계 예측 모델을 만들었다. 그 결과 3단계 운율구 경계(강한 경계, 약한 경계, 운율구 내부 비경계) 예측에서 86.63%의 정확도를, 6단계 운율구 경계(상승조/하강조 강한 경계, 상승조/하강조/평탄조 약한 경계, 운율구 내부 비경계) 예측에서는 81.14%의 정확도를 보였다.
인터넷의 성장은 다양한 응용 프로그램들의 발달을 야기 시켰으며, 그로 인해 모든 패킷을 동일하게 처리하는 현재의 최선지원 서비스 보다 나은 서비스를 제공할 것을 요구하고 있다. 따라서 차세대 인터넷 라우터들은 다양한 레벨의 품질보장 서비스를 제공하여야 한다. 품질보장 서비스를 제공하기 위해서는 모든 입력 패킷을 미리 정의된 룰에 따라 구분하는 패킷 분류가 실시간으로 수행되어야 한다. 패킷분류는 패킷에 포함된 여러 헤더 필드에 대하여 다양한 종류의 검색을 수행하여야 하며, 일치하는 룰들 중에서 가장 높은 우선순위를 갖는 룰을 찾아야 하는 다차원 검색이다. 영역분할을 사용한 사분트라이 구조는 근원지와 목적지 프리픽스를 2차원 트라이 구조로 저장하여 검색을 진행하는 좋은 알고리즘이나, 길이에 대하여 선형검색을 하는 방법이므로 좋은 검색 성능을 보이지 못한다. 본 논문에서는 사분트라이 구조에서 길이에 대하여 이진검색을 진행하는 새로운 패킷분류 알고리즘을 제안한다. 또한 패킷이 여러 개의 룰과 일치하였을 경우 가장 높은 우선순위를 가지는 룰을 선택한다는 특성을 이용하여, 사분트라이를 만드는 과정에서 우선순위를 고려하여 검색 성능을 향상시킬 수 있는 방안을 제안한다.
This paper proposes a loose part monitoring system (LPMS) design with a signal processing method based on fuzzy logic. Considering fuzzy characteristics of metallic impact waveform due to not only interferences from various types of noises in an operating nuclear power plant but also complex wave propagation paths within a monitored mechanical structure, the proposed LPMS design incorporates the comprehensive relation among impact signal features in the fuzzy rule bases for the purposes of alarm discrimination and impact diagnosis improvement. The impact signal features for the fuzzy rule bases include the rising time, the falling time, and the peak voltage values of the impact signal envelopes. Fuzzy inference results based on the fuzzy membership values of these impact signal features determine the confidence level data for each signal feature. The total integrated confidence level data is used for alarm discrimination and impact diagnosis purposes. Through the perpormance test of the proposed LPMS with mock-up structures and instrumentation facility, test results show that the system is effective in diagnosis of the loose part impact event(i.e., the evaluation of possible impacted area and degree of impact magnitude) as well as in suppressing false alarm generation.
SIP(Session Initiation Protocol)는 IP 기반의 VoIP(Voice over IP) 서비스를 실현하기 위한 시그널링 프로토콜이다. 그러나 SIP 프로토콜은 기존의 IP 망을 활용하기 때문에 많은 보안 취약점이 존재한다. 특히 SIP 헤더의 정보를 변경하여 전송하는 SIP Malformed 메시지 공격 같은 경우 VoIP 서비스의 오작동을 유발하거나, 악성코드를 삽입하여 SIP 클라이언트 시스템내 개인정보를 유출하는 등 심각한 문제점을 보이고 있어 이에 대한 대체 방안이 제시되어야 한다. 이에 본 논문에서는 SIP Malformed 메시지 공격탐지에 대한 기존의 연구를 분석하고, 언어 처리에서 단어의 연관성을 분석하는 기법으로 사용되는 공기 정보(Co-occurrence Information)와 네트워크에서 발생하는 실제 SIP 세션 상태 정보를 반영하여 SIP 연관규칙 패턴을 생성하는 기법을 제안하였다. 본 논문에서 제안한 공기정보 기반 SIP 연관규칙 패턴을 이용하여 SIP 비정상메시지 공격을 탐지한 결과 평균 87%의 탐지율을 보였다.
본 논문은 Programmable Logic Controller(PLC) 시뮬레이션을 하기 위한 공장 모델(Plant Model)을 자동으로 생성하는 절차에 대해 기술한다. PLC 프로그램은 공정을 제어하는 로직에 관한 정보이며 그 자체로 공장 모델에 대한 어떤 정보도 포함하고 있지 않기 때문에 시뮬레이션을 위해서는 PLC 프로그램에 대응하는 공장 모델이 반드시 필요하다. 지금까지 PLC 시뮬레이션을 위한 공장 모델은 사용자가 직접 구축하는 방식으로 모델링 되었으나 이는 많은 노력과 공정로직의 완전한 이해 및 시뮬레이션 지식이 요구된다. 이런 어려움을 극복하기 위해 논문은 PLC 프로그램의 심볼테이블(Symbol table)로부터 공장모델을 자동으로 생성하는 과정을 제안한다. 이를 위해P LC 심볼이 공장 모델의 생성을 위한 정보를 포함시키는 PLC 심볼의 작명 규칙을 제안한다. 입력된 심볼 리스트를 분석함으로써 공장 모델을 자동으로 추출할 수 있으며 간단한 예제 공정을 대상으로 구현해 본다.
본 논문에서는 규칙의 커플링 문제를 최소화하기 위해 주어진 데이터의 통계적 특성과 퍼지-러프집합을 기반으로 한 새로운 패턴분류 방법을 제안한다. 제안한 방법 하에서 주어진 데이터의 통계적 특성은 입력부 퍼지집합의 파티션 개수를 결정하고, 생성된 규칙의 커플링문제를 최소화하기 위한 선택기준으로 사용하였다. 또한 러프집합은 수치적인 데이터로부터 생성된 규칙들 간의 불필요한 속성들을 제거하기 위한 도구로서 이용하였다. 제안된 방법의 타당성을 검증하기 위하여 Fisher의 IRIS 데이터를 사용하여 기존의 패턴분류 방법과 분류 정확도를 비교하였다. 실험결과, 제안한 방법이 기존의 학습에 의한 방법들보다 비교적 좋은 성능을 가진다는 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.