• Title/Summary/Keyword: Rubble mound structure

Search Result 70, Processing Time 0.018 seconds

Wave Transformation of a Rubble-Mound Breakwater (사석방파제에 의한 파랑변형에 관한 연구)

  • Kang, I. S.;Kwak, K. S.;Kim, D. S.;Yang, Y. M.
    • Journal of Korean Port Research
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 1994
  • A theoretical formulation is performed to investigate the wave reflection and transmission ratios by a submerged multi-layered rubble-mound breakwater. This theory, which is based on the linear boundary integral method, can be extended to the multi-layered breakwater with arbitrary cross section. In the theoretical analysis evanescent mode wave is not considered, since fictitious open boundaries are put on the places far from the structure. Therefore the mathematical presentation may be simpler, and computational time shorter. The validity of obtained numerical results is demonstrated by comparing with ones of impermeable and permeable breakwaters. Comparison shows resonable agreement. On the basis of these verifications this theory is applied to the one and two-layered submerged rubble-mound breakwater with trapezoidal type.

  • PDF

A Study for Analysis on Deformation of Rubble Mound Structure Using VOF and DEM Methods (VOF법과 DEM에 의한 사석구조물 변형예측모델과 그 적용성에 관한 연구)

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.435-440
    • /
    • 2010
  • A numerical model, which can compute deformation of rubble mound structures composed with various size materials, was proposed. In the numerical model, wave field into the mound structures was computed by CADMAS-SURF and the deformations of mound structures were computed by DEM. Interaction between wave field and sectional deformation of structure was considered and to present the variation of behaviors caused by various properties of materials, computation was carried out with random coefficients by Monte Carlo simulation method for contact stiffness and friction angle. The experiments were carried out with rubbles and glass balls with radius of 2.9cm, 2.6cm and 1.5cm. And the deformation characteristics of rubble mounds composed with various size materials were clarified. Furthermore the validity and the applicability of the model were discussed by comparing with the experimental results.

The Effect of Wave Pressure on Stability Rubble Mound Breakwater (사석식 경사방파제에 작용하는 파압이 제체 안정성에 미치는 영향)

  • Cheong, Gyu-Hyang;Lee, Yong-Dae;Lee, Byong-Moon;Jeong, Sam-Gi;Kim, Keun-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.579-584
    • /
    • 2009
  • Arrangement of the facilities for improving harbor functions depends on sea and land conditions such as the ship's arrival and departure conditions, waves and tide. And the plan and the size of the facilities depend much on harbor and marine environment condition such as cargo quantity, ship size, ship traffic and seawater circulation. Among these, waves have so much effect on a breakwater design that it is the most important to understand their characteristics and to apply them to breakwater design. Therefore, to analyze the effect of waves characteristics over a rubble mound breakwater, we have calculated wave pressure by using numerical analysis at each tide level and have analyzed the effect of wave pressure on structure stability by conducting the stability analysis with the wave pressure. As a result, it is found that during low and mean tide level time the biggest wave pressure is estimated near calm water level. But during high tide time, the biggest wave pressure is estimated in front of capping. And the stability analysis indicates also that a structure is most unstable when low tide time wave pressure is acting on. After reviewing the stability of a structure by applying vertical and horizon wave forces, it is concluded that safety factor is lower than ordinary time(max. about 15%), is also reviewed when designing a rubble mound breakwater.

  • PDF

Horizontal Wave Pressures on the Crown Wall of Rubble Mound Breakwater under Non-Breaking Condition (경사식방파제의 상치콘크리트에 작용하는 수평파압: 비쇄파조건)

  • Lee, Jong-In;Lee, Geum Yong;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.321-332
    • /
    • 2021
  • The crown wall with parapet on top of the rubble mound breakwater represents a relatively economic and efficient solution to reduce the wave overtopping discharge. However, the inclusion of parapet leads to increased wave pressure on the crown wall. The wave pressure on the crown wall is investigated by physical model test. To design the crown wall the wave loads should be available, and the horizontal wave pressure is still unclear. Regarding to the horizontal wave pressure on the crown wall, a series of experiments were conducted by changing the rubble mound type structure and the wave conditions. Based on these results, pressure modification factors of Goda's (1974, 2010) formula have been suggested, which can be applicable for the practical design of the crown wall of the rubble-mound breakwater covered by tetrapods.

A study of stability at the head of a breakwater with directional waves (방향성 파랑의 입사에 따른 이안제 제두부의 안정성에 관한 기초적 연구)

  • 김홍진;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.144-149
    • /
    • 2001
  • The failure at the head section of rubble-mound detached breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes occurring around the head of the rubble-mound detached breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached breakwater. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects. It is clarified that the structure monitored was safely designed for the design wave but the failure was occurred by the reason of breaker waves and scouring processes at the toe 3) It was observed that scouring at the toe developed in the region where steady stream due to vorticity was generated and the spatial variation of scour at the toe of the round head was predominated by incident wave direction.

  • PDF

Seepage analysis on seadike by considering permeability of the rubble base (바닥보호공의 투수성을 고려한 방조제의 침투류해석)

  • 조재홍;김서룡;장웅희;노종구
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.491-498
    • /
    • 2002
  • The rubble base in the seadike structure is construct with rubble-mound of big size for stability of seadike against a tidal current velocity at the closing. The permeability gives an effect to stability of seadike a lot in The case which rubble base is founded long with a lake direction like objective area of this study. The permeability of the rubble base produced in the model test regarding filling condition and materials of the rubble base, It applied the result which it tests in seepage analysis and it analyzed a stability of piping, In this study, it diminishes the permeability of the rubble base to respect, the pit soil more the dredge soil is effective and it was analyzed with the fact that it increases the stability of lake direction slope against the piping.

  • PDF

Development of Stochastic Expected Cost Model for Preventive Optimal- Maintenance of Armor Units of Rubble-Mound Breakwaters (경사제 피복재의 예방적 최적 유지관리를 위한 추계학적 기대비용모형의 개발)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.276-284
    • /
    • 2013
  • A stochastic expected cost model has been suggested by combining the nonlinear cumulative damage model with the expected cost model together which can be useful for doing the preventive optimal-maintenance of the armor units of rubble-mound breakwaters. The suggested model has been satisfactorily calibrated by comparison of the results from others models, also the sensitivity analysis has been carried out in detail under the variation of the associated parameters with the model. The optimal repair times can be directly evaluated by minimizing the expected cost rates that depend on the social importances, damage intensity functions and resistance limits. Finally, the present cost model has been straightforwardly applied to the armor units of rubble-mound breakwaters. Based on the assumption of turning the damaged structure back to the state as good as new after repairs, the required optimal repair times and magnitudes can be determined quantitatively in terms of the optimum balance between the costs and benefits on the preventive maintenance.

Settlement Behavior of Rubble Mound Breakwater and Its Surrounding Seabed due to Wave-Loads (파랑하중에 의한 경사식방파제의 제체와 주변지반의 침하거동)

  • Yun, Seong-Kyu;Kim, Tae-Hyung;Lee, Kyu-Hwan;Lee, Kwang-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.85-96
    • /
    • 2011
  • A breakwater is a important structure for both calmness of harbor and protection of the port facilities from waves generated from typhoons or wind. This study adopted the rubble mound breakwater, which is one of the most popular type of breakwaters in Korea. Rubble mound breakwater had been designed by considering only static condition previously. Recently, a dynamic wave-load due to waves has been also considered in designing breakwater. In design, the wave-load is assumed as an uniform load which only acts in the front slope of the breakwater. However, the assumption is not applicable in reality. In this study, therefore, a real-time wave-load acting on the breakwater instead of the uniform load is considered, and it is assumed to be acting on the seabed too. Based on the numerical analysis, it is found that there is a significant difference in the maximum settlement compared with the result predicted by the existing design method.

Seismic behavior of caisson-type gravity quay wall renovated by rubble mound grouting and deepening

  • Kim, Young-Sang;Nguyen, Anh-Dan;Kang, Gyeong-O
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.447-463
    • /
    • 2021
  • Caisson-type structures are widely used as quay walls in coastal areas. In Korea, for a long time, many caisson-type quay walls have been constructed with a low front water depth. These facilities can no longer meet the requirements of current development. This study developed a new technology for deepening existing caisson-type quay walls using grouting and rubble mound excavation to economically reuse them. With this technology, quay walls could be renovated by injecting grout into the rubble mound beneath the front toe of the caisson to secure its structure. Subsequently, a portion of the rubble mound was excavated to increase the front water depth. This paper reports the results of an investigation of the seismic behavior of a renovated quay wall in comparison to that of an existing quay wall using centrifuge tests and numerical simulations. Two centrifuge model tests at a scale of 1/120 were conducted on the quay walls before and after renovation. During the experiments, the displacements, accelerations, and earth pressures were measured under five consecutive earthquake input motions with increasing magnitudes. In addition, systematic numerical analyses of the centrifuge model tests were also conducted with the PLAXIS 2D finite element (FE) program using a nonlinear elastoplastic constitutive model. The displacements of the caisson, response accelerations, deformed shape of the quay wall, and earth pressures were investigated in detail based on a comparison of the numerical and experimental results. The results demonstrated that the motion of the caisson changed after renovation, and its displacement decreased significantly. The comparison between the FE models and centrifuge test results showed good agreement. This indicated that renovation was technically feasible, and it could be considered to study further by testbed before applying in practice.

Empirical Formula for Wave Runup of Rubble-Mound Structure Covered by Tetrapods: Effects of Front Slope and Armour Layer Thickness (TTP로 피복된 경사식구조물의 처오름높이 산정식: 사면경사 및 피복층 두께 효과)

  • Lee, Jong-In;Bae, Il-Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1051-1059
    • /
    • 2015
  • Wave runup is one of the most important factors affecting the design of coastal structure exposed to wave attack. In this study, two dimensional laboratory tests were conducted under the different random wave conditions and structure configurations to develop a formula to predict runup heights. Rubble-mound structure consisted of tetrapod armour blocks with 1:1.5 and 1:2 slopes. The relative water depths (the ratio of the significant wave height to water depth at the toe) ranged from 0.14 to 0.56. The formula proposed here is applicable to surf similarity parameter ranging from 2 to 6. Runup heights on 1:2 slope were higher than those on 1:1.5 slope. Runup heights were reduced by 5% when the armour layer thickness increased two times.