DOI QR코드

DOI QR Code

Horizontal Wave Pressures on the Crown Wall of Rubble Mound Breakwater under Non-Breaking Condition

경사식방파제의 상치콘크리트에 작용하는 수평파압: 비쇄파조건

  • Lee, Jong-In (Department of Civil Engineering, Chonnam National University) ;
  • Lee, Geum Yong (Department of Architecture and Civil Engineering, Chonnam National University) ;
  • Kim, Young-Taek (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 이종인 (전남대학교 공과대학 토목공학과) ;
  • 이금용 (전남대학교 대학원 건축토목공학과) ;
  • 김영택 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2021.12.14
  • Accepted : 2021.12.20
  • Published : 2021.12.31

Abstract

The crown wall with parapet on top of the rubble mound breakwater represents a relatively economic and efficient solution to reduce the wave overtopping discharge. However, the inclusion of parapet leads to increased wave pressure on the crown wall. The wave pressure on the crown wall is investigated by physical model test. To design the crown wall the wave loads should be available, and the horizontal wave pressure is still unclear. Regarding to the horizontal wave pressure on the crown wall, a series of experiments were conducted by changing the rubble mound type structure and the wave conditions. Based on these results, pressure modification factors of Goda's (1974, 2010) formula have been suggested, which can be applicable for the practical design of the crown wall of the rubble-mound breakwater covered by tetrapods.

경사식방파제 상치콘크리트에는 경제적인 이유와 월파의 효과적인 저감을 위해 파라펫이 설치되기도 하지만, 파라펫 설치로 인해 상치콘크리트에는 증가된 파압이 작용하게 된다. 일반적으로 상치콘크리트에 작용하는 파압은 수리실험을 통해 검토되며, 상치콘크리트 설계를 위해서는 파압이 산정되어야 하지만 여전히 불명확한 부분이 있다. 본 연구에서는 상치콘크리트에 작용하는 수평파압 산정을 위해 경사식구조물 형상과 다양한 파랑조건을 적용한 수리실험을 수행하였다. 실험결과를 이용하여 Goda(1974, 2010)의 파압산정식에 적용되는 파압저감계수를 제안하였으며, 테트라포드가 피복된 경사식방파제 상치콘크리트 설계에 실무적으로 적용 가능 할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 해양수산부 및 해양수산과학기술진흥원의 연구비 지원(과제번호: 20180323)으로 수행된 연구이며, 연구비 지원에 감사드립니다.

References

  1. Aniel-Quiroga, i., Vidal, C., Lara, J.L. and Gonzalez, M. (2019). Pressures on a rubble-mound breakwater crown-wall for tsunami impact. Coastal Engineering, 152, 543-558.
  2. Chen, X., Hofland, B., Altomare, C., Suzuki, T. and Uijttewaal, W. (2015). Forces on a vertical wall on a dike crest due to overtopping flow. Coastal Engineering, 95, 103522.
  3. Contestabile, P., Iuppa, C., Lauro, E.D., Cavallaro, L., Andersen, T.L. and Vicinanza, D. (2017). Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion. Coastal Engineering, 122, 60-74. https://doi.org/10.1016/j.coastaleng.2017.02.001
  4. Doorslaer, K.V., Romano, A., Rouck, J.D. and Kortemhaus, A. (2017). Impacts on a storm wall caused by non-breaking waves overtopping a smooth dike slope. Coastal Engineering, 120, 93-111. https://doi.org/10.1016/j.coastaleng.2016.11.010
  5. Formentin, S.M., Palma, G. and Zanuttigh, B. (2021). Integrated assessment of the hydraulic and structural performance of crown walls on top of smooth berms. Coastal Engineering, 168, 103951. https://doi.org/10.1016/j.coastaleng.2021.103951
  6. Goda, Y. (1974). New wave pressure formulae for composite breakwaters. Proceedings of the 14th Coastal Engineering Conference, ASCE, 1702-1720.
  7. Goda, Y. (2010). Random seas and design of maritime structures. World Scientific, Singapore; ISBN 978-981-4282-39-0.
  8. Guanche, R., Losada, I.J. and Lara, J.L. (2009). Numerical analysis of wave loads for coastal structure stability. Coastal Engineering, 56, 543-558. https://doi.org/10.1016/j.coastaleng.2008.11.003
  9. Jacobsen, N.G., van Gent, M.R.A., Capel, A. and Borsboom, M. (2018). Numerical prediciton of integrated wave loads on crest walls on top of rubble mound structures. Coastal Engineering, 142, 110-124. https://doi.org/10.1016/j.coastaleng.2018.10.004
  10. Martin, F.L., Losada, M.A. and Medina, R. (1999). Wave loads on rubble mound breakwater crown walls. Coastal Engineering, 37, 149-174. https://doi.org/10.1016/S0378-3839(99)00019-8
  11. Molines, J., Herrera, M.P. and Medina, J.R. (2018). Extimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. https://doi.org/10.1016/j.coastaleng.2017.11.004
  12. Norgaard, J.Q.H., Andersen, T.L. and Burcharth, H.F. (2013). Wave loads on rubble mound breakwater crown walls in deep and shallow water wave conditions. Coastal Engineering, 80, 137-147. https://doi.org/10.1016/j.coastaleng.2013.06.003
  13. Pedersen, J. (1996). Wave forces and overtopping pn crown walls of rubble mound breakwaters. Ph.D. thesis, Series paper 12, ISBN 0909-4296 Hydraulics & Coastal Engineering Lab., Dept. of Civil Engineering, Aalborg University, Denmark.
  14. Takahashi, S., Tanimoto, K. and Shimosako, K. (1990). Wave and block forces on a caisson covered with wave dissipating blocks. Report: Port and Harbour Research Institute, Yokosuka, Japan, 3-34.
  15. van der Meer, J.W. and Stam, C.J.M. (1992). Wave run-up on smooth and rock slopes. J. of Waterways, Port, Coastal and Ocean Engineering, 188(5), 534-550. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:5(534)
  16. van Gent, M.R.A. and ven der Werf, I. (2019). Influence of oblique wave attack on wave overtopping and forces on rubble mound breakwater crest walls. Coastal Engineering, 151, 79-96.