• Title/Summary/Keyword: Rubber insulation

Search Result 108, Processing Time 0.025 seconds

A Study on Properties of Partial Discharge in Silicone Rubber (실리콘 고무의 부분방전 특성에 관한 연구)

  • Lee, Sung-Ill;Kwon, Young-Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.890-894
    • /
    • 2011
  • In this thesis, the silicone filler with a sample size of 0~75 phr and void size of 2~4.5 mm is prepared in order to diagnose the defect of void which exists in widely used insulation material, silicone rubber. In this silicone rubber sample, electrodes are connected and whilst the voltage changes, applied voltage 7 kV~9 kV is increased constantly over time and discharge quantity, discharge frequency and applied voltage (T-QNV) were measured. The discharge quantity of the applied voltage (VQ) is measured to estimate inception voltage and extinction voltage. In addition, under the condition of maintaining constant applied voltage, discharge quantity and discharge frequency (QN) are measured, and its characteristics are analyzed.

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

Development of All-in-one Case Insulation for the End-burning Solid Rocket Motor (End-burning 고체추진기관 적용 일체형 연소관 내열재 개발)

  • Kim, Jinyong;Lee, Sunjae;Choi, Jiyong;Park, Jaebeom;Lee, Sangyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1045-1047
    • /
    • 2017
  • In this study, we focused on development of the all-in-one case insulation for end-burning solid rocket motors. Material of insulation used unvulcanized rubber based on EPDM/kevlar. In case of boots insulation, preforms was made by using hot press molding, and then the tape was inserted between two preforms for all-in-one curing in the case. Finally bladder method was applied for curing of insulation.

  • PDF

Dielectric Strength of Macro Interface between Epoxy and Rubber According to the Interface Condition (계면조건에 따른 에폭시와 고무 거시계면의 절연내력)

  • Oh, Yong-Cheul;Bae, Duck-Kweon;Kim, Jin-Sa;Kim, Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.581-585
    • /
    • 2006
  • Macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably in the complex insulation system using in extra high voltage (EHV) electric devices. In this paper, Interface between epoxy and ethylene propylene diene terpolymer (EPDM) was selected as an interface in electrical insulation system and the AC dielectric strength of the interface was investigated. Air compress system was used to give pressure to the interface. Specimens were prepared in various ways to generate different surface conditions for each type of interface. Increasing interfacial pressure, decreasing surface roughness and spreading oil over surfaces improve the AC interfacial dielectric strength. Especially, the dielectric strength was saturated at certain interfacial pressure.

Studies on Incombustibility Improvement of EPDM-based Insulation with Al(OH)3 and Sb2O3 (EPDM계 내열재의 Al(OH)3와 Sb2O3 함량에 따른 난연 효과 연구)

  • Kim, Jinyong;Lim, Daehyun;Lee, Wonbok
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.36-41
    • /
    • 2013
  • In order to improve incombustibility of EPDM(Ethylene propylene diene monomer)-based rubber, inorganic materials as $Al(OH)_3$ and $Sb_2O_3$ were added. The mechanical and thermal properties have been measured for vulcanized rubber loaded with different concentrations of $Al(OH)_3$ and $Sb_2O_3$. As inorganic material contents increases from 5phr to 30phr, the specific gravity and hardness increase while elongation at break decreases. This study performed incombustibility test and thermal analysis through TGA(Thermogravimetric Analyzer). As a results, incombustible and thermal properties of EPDM-based rubber were improved as $Al(OH)_3$ and $Sb_2O_3$ contents increase.

Degradation of Composite Insulator as Accelated Aging Test (가속열화 실험에 의한 고분자 애자의 분해)

  • 이용희;장동욱;박영국;박정남;강성화;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.144-147
    • /
    • 2000
  • The effect of accelerated aging test on ethylene-propylene-diene monomer(EPDM) rubber used for outdoor insulation was studied by X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), FFT spectrum alalysis, and electrical pulse counts using PC by oscilloscope(300 MHz). In electrical alalysis, FFT spectrum analysis indicated arcing caused a significant increase in the third harmonic content of the leakage current of polluted insulator. Also, pulse counts increased as aging time. The surface oxygen and aluminum content were found to increase and that of carbon and nitrogen were found to decrease with time. The detailed XPS analysis indicated that the concentration of carbon in C-C decreased and concentration of highly oxidized carbons increased with time, which was due to the oxidation of EPDM rubber polymer SEM analysis indicated that crack and erosion of EPDM rubber occurred with time.

  • PDF

Properties of Discharge Current on Silicone Rubber as Electrical Field in Salt Fog (Salt fog 시험에서 인가전계에 따른 silicone rubber의 방전전류의 특성)

  • Kang, S.H.;Park, Y.G.;Lee, W.Y.;Lee, K.W.;Jang, D.U.;Kim, W.S.;Lee, Y.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1621-1623
    • /
    • 1999
  • Recently, high voltage outdoor ploymer insulators have been widely used commercially owing to their excellent electrical and mechanical properties, superior comtamination flashover performance, light weight, easy installation or handing, no maintenance during service, competitive price and so on. compared to porcelaain and glass insulators. For instance, silicone rubber(SR) for polymeric insulators specially has much superior insulating and anti-pollution performance due to its specific hydrophobicity even in severe contaminated environments. We have investigated surface discharge current characteristics of silicone rubbers(SR) for HV outdoor composite insulation specimen under accelerated aging codition using a computer measuring system. The relations of average leakage current and surface discharge current repetition rates and discharge current amplitude, the distribution of discharge current amplitude were studied to investigate electrical conduction of silicone rubber surface with the salt fog condition.

  • PDF

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

Study of Thermal Decomposition of Kevlar/EPDM (Kevlar/EPDM 고무계 내열재의 열반응 연구)

  • Kim, Yun-Chul;Jung, Sang-Ki;Kang, Yoon-Goo;Lee, Seung-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.257-260
    • /
    • 2010
  • The purpose of this paper is to introduce a method to predict the case thermal insulation charred and erosion thickness as a function of the exposure time to combustion gases and in solid rocket motors. The sizing of the insulator requires a good estimation of the thermal and mechanical loads at the wall. The method is particularly suitable for internal insulation areas subjected to high radiative, convective heat fluxes and $Al_2O_3$ slag pool. The mathematical approach and lab-scale experiment were intentionally simplified in order to obtain some simple and rapid relationships particularly useful for trade-off studies and thermal insulation preliminary design. The method was utilized to compute the charred and erosion thicknesses of the insulation on the aft chamber domes. A comparison between theoretical and experimental insulator char thicknesses of the motor insulation is reported, indicating the applicability of the predictive method employed.

  • PDF

Patterns and Characteristics of Corrugated Stainless Steel Tubing for a Yellow Insulation Ring Type by Artificially Deteriorated (인위적으로 열화된 황색절연링형 금속플렉시블호스의 패턴 및 특성)

  • Lee, Jang-Woo;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.1-6
    • /
    • 2018
  • This study is to analyze the characteristics of the yellow insulation ring type of the CSST used for tubing when it is artificially deteriorated and damaged by burning. The CSST for tubing consists of a tube, protective coating, nut, yellow insulation ring, packing, and socket. In addition, it is thought that a yellow insulation ring and rubber packing were used to connect the tube and socket in order to improve the airtightness and insulation performance. The result of the verification of the data acquired from the tests in the 95% confidence interval shows that the Anderson-Darling (AD) and P value were analyzed to be 0.945 and 0.015, respectively. This confirms that the test data of the CSST for tubing is reliable. The analysis of the arithmetic mean of the insulation resistance of a CSST showed that the CSST damaged by burning by a torch, and the one damaged by electrical burning, was $16.7k{\Omega}$ (the greatest relatively) and $208{\Omega}$ (the lowest), respectively, while it was $1.72k{\Omega}$ in the case of a normal product. Therefore, the analysis result of the insulation resistance of the CSST collected from the scene of a fire can be utilized to examine the cause of damage by burning. In addition, it was found that when the maximum current of 97 A was applied to the CSST for about 5 s using a Primary Current Injection Test System (PCITS) the protective film and insulation ring of the CSST has no difference from that of a normal product. However, a part of the metal tube was melted.