• Title/Summary/Keyword: Rubber Materials

Search Result 1,020, Processing Time 0.023 seconds

Detection of Foreign Body in Esophageal Foreign Body Model Using Three Dimensional Reconstruction Technique (식도 이물 모델에서 이물 탐색을 위한 삼차원 재구성법의 활용)

  • Woo, Kuk Sung;Yoo, Young Sam;Kim, Dong Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.18 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • Objective This study was conducted to gather basic information of 3D CT in detecting and gaining information of esophageal foreign body (FB) models. Materials and Methods The chest model was made using PVC bottle, rubber balloon and plaster. Fish bone, Persimmon stone were used to mimic foreign bodies of esophageal model. The foreign body models were inserted into the balloon removing air from it and the balloon was sealed. The esophageal FB model was inserted into the chest model. The remaining space in the chest model was filled with fish paste and water to simulate soft tissue around esophagus. CT of chest model was reconstructed three-dimensionally by Rapidia software to make images of foreign body models. The axial CT, MPR image and VOI image were compared with real foreign body materials as to shape, size, location and orientation. Results Esophageal FB models were easily made. CT data gave good 3D images and showed realistic foreign body materials. Conclusion The results indicate the usefulness of 3D CT technique to help in diagnosis of esophageal foreign body models.

  • PDF

Effect of Polycarbonate Covering Sheet on Greenhouse Indoor Environments and Growth Behavior of Cherry Tomatoes

  • Choi, Kyung Yun;Kim, Soo Bok;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Ju-Ho;Kim, Namil
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.114-119
    • /
    • 2020
  • The effect of a greenhouse-covering material on its indoor environment and on the characteristics of cherry tomatoes grown in it was investigated. The conventional polyethylene (PE) film on the greenhouse roof was replaced by a polycarbonate (PC) sheet, while maintaining the main structural frame intact. Color changes and the formation of water droplets on the PC surface were avoided by applying coextrusion and coating layers. When compared to the PE greenhouse, the PC greenhouse enabled increased light transmittance and thus a higher indoor temperature during both summer and winter. The thermal insulating property of the PC sheet effectively reduced the heating loss by approximately 55% during winter. The cherry tomatoes grown in the PC greenhouse exhibited superior fruit characteristics in terms of size, weight, and sugar content. The total amount of cherry tomatoes produced per unit area (1,000 ㎡) in the PC greenhouse was found to be greater by approximately 19% compared to that in the PE greenhouse.

Development of PC-NC Water Jet Cutting System and Cutting of Titanium (PC-NC 제어 Water Jet 가공기의 개발과 티타늄의 시험 절삭)

  • Choi, Byung-Mun;Hong, Seong-Ki;Ryuh, Beom-Sahng;Park, Sang-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.53-60
    • /
    • 2001
  • Water jet cutting is a new technology using very high pressure water as a cutting tool. Water jet cutting system consists of water preparation part, pressure generation pate, cutting head, and motion part. A PC-based numerical controlled (PC-NC) X-Y table is developed and water get cutting system is installed thereon. Water jet machining is applicable to various kinds of materials ranging from soft materials such as rubber and meat to hard-to-cut materials such as titanium. This paper shows the application of the abrasive waterjet system to titanium cutting.

  • PDF

The Effect of Test Variables on the Accuracy of Equo-Tip Hardness (Equo-Tip 경도값에 미치는 실험변수의 영향)

  • Nahm, S.H.;Jeon, S.B.;Kim, J.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.32-36
    • /
    • 1990
  • For the accurate measurements of hardness in a material, it is necessary to have a thorough understanding of the effects of test variables on the accuracy of hardness value. For the rebound hardness test, major test variables are the radius of hammer ball tip, type of backing materials, size and roughness of the specimen. In this study, effects of these variables on Equo-Tip hardness value were investigated. Hardness measurements were carried out using WC balls with various sizes of worn-ot zone. The sample materials chosen for the experiments were commercial standard hardness blocks and SM45C steel bars subjected to either normalization or quench and temper treatments. As backing materials, aluminum, steel and rubber plates were used in all the experiments. Experimental results show that for the accurate measurements of Equo-tip hardness, it is necessary to use the hammer ball with a worn-out zone parameter of less than 0.23, and the recommended minimum thickness and width of the specimen are 25mm and 70mm, respectively. Further for the surface preparation, the specimens need to be polished with an emery paper of No. 400 or finer, and for the backing matrials, it is recommended to use steels or rubbers.

  • PDF

Study on Property Modification with Polymer Compositions in the Manufacture of Compounds for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • Herein, three polymer compounds were manufactured using three polymer combination methods, ethylene-vinyl acetate/ethylene-propylene-diene-copolymer (EPDM), ethylene-vinyl acetate (EVA)/polyethylene-A (PE-A; density: 0.870), and ethylene-vinyl acetate (EVA)/polyethylene-B (PE-B; density: 0.885), for making cable sheath for use in the shipping industry. In this study, EVA, EPDM, PE-A, and PE-B were used as matrix polymers, and EVA-grafted maleic anhydride was used as a coupling agent for compounding with various compounds such as a fire retardant, cross-linking agent, filler, and other additives, besides the plasticizer. ${\Delta}T$, Mooney viscosity, and tensile strength increased in order of EPDM < PE-A < PE-B, the probable reason is due to the different crosslinking effect. The three compounds showed similar results for fire resistance and aging resistance after compounding process, but they showed excellent cold resistance owing to the non-polarity of the polymers and sufficient plasticizer content.

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun;Son, Jong-In;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin;Kwon, Yong Rok;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.

Effect of Blowing Agents on Physical Properties of Polyurethane-polydimethylsiloxane Hybrid Foam

  • Asell Kim;Hyeonwoo Jeong;Sang Eun Shim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.208-215
    • /
    • 2023
  • In this study, the properties of polyurethane-polydimethylsiloxane (PU-PDMS) hybrid foams containing different types and contents of physical blowing agents (PBAs) were investigated. Two types of blowing agents, namely physical blowing agents and thermally expandable microspheres (TEM), were applied. The apparent density was measured using precisely cut foam samples, and the pore size was measured using image software. In addition, the microstructure of the foam was confirmed via scanning electron microscopy and transmission electron microscopy. The thermal conductivities related to the microstructures of the different foams were compared. When 0.5 phr of the hydrocarbon-based PBA was added, the apparent density and pore size of the foam were minimal; however, the pore size was larger than that of neat foam. In contrast, the addition of 3 phr of TEM effectively reduced both the apparent density and pore size of the PBAs. The increase in resin viscosity owing to TEM could enhance bubble production stability, leading to the formation of more uniform and smaller pores. These results indicate that TEM is a highly efficient PBA that can be employed to decrease the weight and pore size of PU-PDMS hybrid foams.

Study on stress transition mechanism by tensile and fracture characteristics of membrane material at bolting part in clamping part of membrane Structures (막구조 정착부의 볼트접합부 막재료의 신장 및 파단상태를 통한 응력전달체계에 관한 연구)

  • Kim, Hee-Kyun;Shim, Chun-Bo;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.97-105
    • /
    • 2023
  • The membrane structure should maintain the membrane materials in tension for structural stability guaranty. The anchoring part in the membrane structure is an important part. It has the function to introduce tension into membrane materials and function to transmit stress which membrane materials receives to boundary structure such as steel frames. In this paper, it grasps anchoring system of the anchoring part in the membrane structure concerning the fracturing characteristic condition of membrane structure, and the influence which is caused to yield it designates the stress state when breaking the membrane structure which includes the anchoring part and that stress transition mechanism is elucidated as purpose. This paper follows to previous paper, does 1 axial tensile test concerning the bolting part specimen, grasp of fracturing progress of the bolting part and the edge rope and hardness of the rubber, does the appraisal in addition with the difference of bolt tightening torque. As a result, the influence which the bolt anchoring exerts on the fracturing characteristics of the membrane material in the membrane structure anchoring part is examined.

Synthesis and Lubricant Properties of Vegetable Oil based on Estolides (식물유 기반 에스토라이드 합성 및 윤활 특성)

  • Son, Jeong-Mae;Kim, Nam-Kyun;Shin, Jihoon;Chung, Kunwo;Yoon, Byung-Tae;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.195-204
    • /
    • 2015
  • Several researches are focused on improving the value of fine chemicals based on biomass resources due to environmental and other concerns associated with the use of petroleum-based products. Therefore, the synthesis and application of estolides derived from plant-based waste oil materials and their application as lubricants and as processing oil for butyl rubber products have been studied. Four kinds of estolide were prepared with conversions of 71~92% over 24h using various vegetable oils, as determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. FT-IR spectroscopy determines the esterification of estolides using 2-ethylhexyl alcohol. The estolides have iodine values of 35~90, α-ester/α-acid ratios of 0.45~0.55, and total acid number of 114~134 mg KOH g–1. Four ball wear tests show that the wear scar diameters (WSDs) of estolides as base oil significantly decreased to 0.328~0.494 mm, compared to WSDs of 0.735 and 0.810 mm of WSD for 150N and Yubase 6, respectively, as general base oil. Thus, the estolides have better wear resistance and satisfying design objectives for the engineering of a variety of lubricant base oils.