• 제목/요약/키워드: Ru nanoparticle

검색결과 19건 처리시간 0.037초

Electro-Spun RuO2 나노선 지지체에 담지된 Pt촉매의 메탄올 Electro-Oxidation 특성 (Methanol Electro-Oxidation of Electro-Spun RuO2 Nanowire Supported Pt Catalysts)

  • 염용식;안효진
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.419-424
    • /
    • 2011
  • Pt nanoparticle catalysts incorporated on $RuO_2$ nanowire support were successfully synthesized and their electrochemical properties, such as methanol electro-oxidation and electrochemically active surface (EAS) area, were demonstrated for direct methanol fuel cells (DMFCs). After fabricating $RuO_2$ nanowire support via an electrospinning method, two different types of incorporated Pt nanoparticle electrocatalysts were prepared using a precipitation method via the reaction with $NaBH_4$ as a reducing agent. One electrocatalyst was 20 wt% Pt/$RuO_2$, and the other was 40 wt% Pt/$RuO_2$. The structural and electrochemical properties of the Pt nanoparticle electrocatalysts incorporated on electrospun $RuO_2$ nanowire support were investigated using a bright field transmission electron microscopy (bright field TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. The bright field TEM, XRD, and XPS results indicate that Pt nanoparticle electrocatalysts with sizes of approximately 2-4 nm were well incorporated on the electrospun $RuO_2$ nanowire support with a diameter of approximately 50 nm. The cyclic voltammetry results showed that the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support give superior catalytic activity in the methanol electro-oxidation and a higher electrochemically active surface (EAS) area when compared with the electrospun Pt nanowire electrocatalysts without the $RuO_2$ nanowire support. Therefore, the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support could be a promising electrode for direct methanol fuel cells (DMFCs).

Ru Nanoparticle이 첨가된 Sn-58Bi 솔더의 기계적 신뢰성 및 계면반응에 관한 연구 (Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints)

  • 김병우;최혁기;전혜원;이도영;손윤철
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.95-103
    • /
    • 2021
  • 대표적인 저온솔더인 Sn-58Bi에 Ru nanoparticles을 첨가하여 Sn-58Bi-xRu 복합솔더를 제작하고 Cu/OSP 및 ENIG 표면처리된 PCB 기판과 반응시켜 계면반응 및 솔더조인트 신뢰성을 분석하였다. Cu/OSP와의 반응에서 형성된 Cu6Sn5 IMC는 Ru 함량에 따른 두께 변화가 거의 없고 100hr aging 후에도 큰 변화없이 고속 전단시험시 솔더 내부로 연성파괴가 발생하였다. ENIG 와의 반응시에는 Ru 함량이 증가함에 따라서 Ni3Sn4 IMC 두께가 감소하는 경향을 보였으며 일부 시편에서 ENIG 특유의 취성파괴 현상이 발견되었다. Ru 원소는 계면 부근에서 발견되지 않아서 계면반응에 크게 관여하지 않는 것으로 판단되며 주로 Bi phase와 함께 존재하는 것으로 분석되고 있는데 어떠한 형태로 두 원소가 공존하고 있는지에 대해서는 추가적인 연구가 필요하다.

연료전지 백금-루테늄 나노입자의 전기화학적 거동에 대한 탄소지지체의 활성화 효과 (Influence of Chemical Activation of Carbon Supports on Electrochemical Behaviors of Pt-Ru Nanoparticle for Fuel cells)

  • 김병주;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.93.2-93.2
    • /
    • 2011
  • In this work, graphite nanofibers (GNFs) were prepared for using catalyst supports in fuel cells. The GNFs were chemically activated to obtain high surface area and small pore diameter with different potassium hydroxide (KOH) amounts, i.e., 0, 1, 3, 4, and 5 g as an activating agent. And then Pt-Ru was deposited onto activated GNFs (A-GNFs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto A-GNFs were determined by specific surface area and pore size analyzer, X-ray diffraction (XRD), transmission electron microscopy (TEM), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrochemical properties of Pt-Ru/A-GNFs catalysts were also analyzed by cyclic voltammetry (CV) experiments. From the results, the A-GNFs carbon supports activated with 4 g of KOH (A4g-GNFs) showed that the highest specific surface areas. In addition, the A4g-GNFs led to uniform dispersion of Pt-Ru onto A4g-GNFs, resulting in the enhancement of electrochemical activity of Pt-Ru catalysts.

  • PDF

Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구 (Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles)

  • 안혜성;하현우;유미;최혁;김현유
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.365-369
    • /
    • 2018
  • We perform density functional theory calculations to study the CO and $O_2$ adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and $O_2$, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and $O_2$ binding energy values, which are required for facile CO oxidation. On the other hand, the $O_2$ binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than $O_2$. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Pt-based CO-tolerant CO oxidation catalyst.

다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성 (Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite)

  • 임혜민;류광선
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.118-122
    • /
    • 2012
  • We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

Understanding Deactivation of Ru Catalysts by In-situ Investigation of Surface Oxide Stability under CO Oxidation and Oxidative/Reductive Conditions

  • Qadir, Kamran;Joo, Sang-Hoon;Mun, Bong-Jin S.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.212-212
    • /
    • 2011
  • In addition to the catalysts' activity and selectivity, the deactivation of catalysts during use is of practical importance. It is crucial to understand the phenomena of the deactivation to predict the loss of activity during catalyst usage so that the high operational costs associated with catalyst replacement can be reduced. In this study, the activity of Ru catalysts, such as nanoparticles (3~6 nm) and polycrystalline thin film (50 nm), have been investigated under CO oxidation and oxidative/reductive reaction conditions at various temperatures with the ambient pressure X-Ray photoelectron spectroscopy (APXPS). With APXPS, the surface oxides on the catalyst are measured and monitored in-situ. It was found that the Ru film exhibited faster oxidation-and-reduction compared to that of nanoparticles showing mild oxidative-and-reductive characteristics. Additionally, the larger Ru nanoparticles showed a higher degree of oxide formation at all temperatures, suggesting a higher stability of the oxide. These observations are in agreement with the catalytic activity of Ru catalysts. The loss of activity of Ru films is correlated with bulk oxide formation, which is inactive in CO oxidation. The Ru nanoparticle, however, does not exhibit deactivation under similar conditions, suggesting that its surface is covered with a highly active ultrathin surface oxide. Since the active oxide is more stable as nanoparticles than as a film, the nanoparticles showed mild oxidative/reductive behavior, as confirmed by APXPS results. We believe these simultaneous observations of both the surface oxide of Ru catalysts and the reactivity in real time enable us to pinpoint the deactivation phenomena more precisely and help in designing more efficient and stable catalytic systems.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

유해가스 차단시스템용 MEMS 가스 센서 (MEMS based on nanoparticle gas sensor for air quality system)

  • 이의복;박영욱;황인성;김선중;차정호;이호준;이종흔;주병권
    • 전기전자학회논문지
    • /
    • 제13권4호
    • /
    • pp.37-42
    • /
    • 2009
  • 본 연구에서는 졸겔법으로 ZnO, 수열합성법으로 $SnO_2$ 나노분말을 제조하고 이들 나노분말에 Pd, Ru 등의 촉매를 첨가하였다. MEMS 기술로 제작된 히터 및 전극 구조 위에 나노 감지 분말을 도포하여 CO and $NO_2$ 가스 센서를 제작하였다. 0.1 wt% Pd 도핑된 $SnO_2$ 가스센서와 Ru 도핑된 ZnO 가스 센서는 각각 CO 30 ppm, $NO_2$ 1 ppm의 낮은 농도에서도 높은 감지 특성을 보였다.

  • PDF