• 제목/요약/키워드: Ru 촉매

검색결과 176건 처리시간 0.028초

전기영동법에 의한 직접메탄올 연료전지용 Pt-Ru/C 복합촉매 전극제조 및 특성평가 (Fabrication of Pt-Ru/C Composite Catalyst Electrodes by Electrophoresis Deposition Method for DMFC Fuel Cell and their Characteristics)

  • 김정현;송민경;김진우;유연태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.86.2-86.2
    • /
    • 2011
  • 저온형 연료전지인 직접 메탄올 연료전지(Direct Methanol Fuel Cells, DMFC)는 친환경적인 발전 시스템, 높은 에너지 효율의 장점 때문에 주목을 받고 있으나 연료극의 촉매로 사용되는 금속은 고가의 귀금속인 Pt와 Ru가 요구되어 제조비용이 비싸기 때문에 촉매의 양을 줄이고, 반응 도중 생성되는 CO에 의한 촉매의 피독 문제 등 해결하여야 할 점이 산적해 있어 연료전지 중 촉매의 활성을 높이는 연구들이 활발히 이루어지고 있다. 종래의 MEA의 촉매층 제조공정은 우선 환원석출법에 의해 Pt-Ru/C를 합성하고 Nafion 용액에 혼합하여 Pt-Ru/C 슬러리를 제조한다. 이 방법에서는 carbon sheet에 spray 방법으로 Pt-Ru/C 촉매층이 만들어지기 때문에, Pt-Ru 촉매가 Nafion에 의해 부분적으로 매몰되어 촉매의 전기화학적 활성이 떨어지는 문제점이 있다. 이를 해결하는 방안으로 펄스전류를 이용하여 Pt-Ru 합금입자를 carbon sheet에 전기화학적으로 담지 시켜 Nafion에 매몰되는 것을 방지하는 펄스전해법 연구가 진행되고 있다. 그러나 촉매의 입자크기가 일반적으로 50~70 nm 이상으 크기 때문에 촉매의 낮은 활성이 문제점으로 야기되고 있다. 본 연구에서는 Pt-Ru/C 촉매층 제조 문제점을 해결하고, 촉매의 전기화학적 활성을 증가시키기 위해서 2~4 nm Pt-Ru 콜로이드를 전해액으로 사용하고, 전기영동법을 이용하여 Pt-Ru 나노 입자를 carbon sheet($1{\times}1cm^2$) 에 담지 시켰다. 전기영동법에서 균일한 Pt-Ru 촉매층의 제조를 위해 전류인가 방법으로는 펄스전류를 사용하였고, 실험변수로는 전해액 pH, duty cycle, 담지시간을 선정하였다. 합성된 Pt-Ru 콜로이드를 TEM분석으로 나노입자의 크기와 분산성 분석하였고, 콜로이드 나노입자의 표면전하 상태를 분석하기 위해 zeta-potential을 분석하였다. Pt-Ru/C의 촉매의 전기화학적 활성을 분석하기 위하여 0.5 M H_2SO_4$ 와 1 M $CH_3OH$ 혼합용액에 CV(Cyclic Voltammetry)실시하였고, carbon sheet 전극 상 Pt-Ru의 분산성 확인을 위하여 FE-SEM분석을 수행하였다.

  • PDF

Ni-Ru 계열 촉매 상에서의 $CH_4$ 수증기 개질 반응 ([ $CH_4$ ] steam reforming over Ni-Ru bimetallic catalysts)

  • 정진혁;이정원;이득기;김동현;서동주;서유택;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.256-259
    • /
    • 2005
  • 본 연구에서는 기존 니켈 활성성분만의 알루미나담지 촉매에 비해 고온에서의 수소를 사용한 환원 전처리 과정을 거치지 않고도 높은 반응활성을 나타내며, 반응 중 탄소침적에 대한 촉매 저항성에서도 우수한 결과를 나타낸 루테늄-니켈 촉매에 대해보고 하고자 한다. 메탄 수증기 개질 반응을 통해, 루테늄을 최종적으로 담지한 알루미나 담지니켈계 촉매는 별도의 전처리과정 없이 $650^{\circ}C$에서부터 높은 반응성을 보였으며, 루테늄과 니켈을 동시에 담지한 경우보다 더 우수한 활성을 나타내었다. Ru의 담지량을 달리한 실험에서는$RU(0.5)/Ni(20)/Al_2O_3$ 촉매가 가장 높은 활성을 보였다. $H_2-TPR$ 분석 결과, $Ru(0.5)/Ni(20)/A1_2O_3$촉매의 경우 세 가지 환원 피크가 나타났으며, $Ni(20)/A1_2O_3$촉매와 비교해 볼 때, 저온(<$130^{\circ}C)$에서 환원가능한 $RUO_2$의 존재를 확인할 수 있었다. 담지된 RU은 분산도가 높아, XRD분석 결과에서 Ru이나 $RuO_2$의 특성 피크가 존재하지 않았다. 또한 $650^{\circ}C$에서 10시간 개질반응 후 얻어진 촉매에 대해 $O_2-TGA$를 분석한 결과, $Ni(20)/Al_2O_3$촉매는 $-7.2wt\%$ 정도의 큰 무게 감소를 보였으며, 이는 촉매 표면에 생성된 carbon tube에 의한 것임을 SEM 분석을 통해 알 수 있었다 이에 반해, $Ru(0.5)/Ni(20)/Al_2O_$ 촉매는 $O_2-TGA$$0.3wt\%$ 정도 무게 증가에 그쳤으며, SEM 분석상 carbon tube의 생성이 크게 억제되었음을 알 수 있었다.

  • PDF

Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성 (Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode)

  • 조승구;박종호
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.201-205
    • /
    • 2004
  • 본 연구에서는 Pt-Ru 촉매를 $H_2PtCI_6$$RuCl_3$ 용액을 화학적 환원에 의해 전도성 고분자인 폴리피롤을 중합시킨 Nafion 막위에 직접 침적시켰다 EDS 분석 결과 Pt 및 Ru 촉매는 Ppy/Nafion 표면에 주로 분포하는 것을 알 수 있었다. 또한 폴리피롤이 중합된 Nanon 위에 침적시킨 Pt-Ru 촉매의 메탄올에 대한 전기화학적 산화특성을 CV로 평가하였다. 메탄을 산화 개시 전위는 Ru촉매에 사용이 증가함에 따라 음전위 방향으로 전이되었다. 따라서 폴리피롤이 중합된 Nafion표면에 Pt-Ru촉매를 직접 함침할 수 있었고. 메탄올 산화 특성을 나타내는 전극을 제작할 수 있었다.

선택적 CO 산화반응을 위한 고분산된 $Ru/{\alpha}-Al_2O_3$ 촉매개발 (Highly dispersed $Ru/{\alpha}-Al_2O_3$ Catalyst development for selective CO oxidation reaction)

  • 엄현지;구기영;정운호;이영우;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.228.1-228.1
    • /
    • 2010
  • 선택적 CO 산화반응(PrOx)을 위한 Ru이 고분산 담지된 $Ru/{\alpha}-Al_2O_3$ 촉매를 증착-침전법(deposition-precipitation)으로 제조하였다. 용액의 pH와 aging 시간에 따른 Ru 입자의 크기 변화와 분산도의 영향을 살펴보았으며 함침법(impregnation)으로 비교 촉매를 제조하였다. 촉매의 특성분석은 BET, TPR, CO-Chemisorption분석을 수행하여 촉매의 비표면적, 환원특성, 분산도를 알 수 있었다. 특성분석결과, 증착-침전법으로 제조한 $Ru/{\alpha}-Al_2O_3$ 촉매가 함침법으로 제조한 촉매에 비해 분산도가 높았으며, pH별 촉매 제조에서는 pH6.5로 제조한 촉매가 22.06%로 가장 높은 분산도를 보였다. 또한, 담체의 비표면적 영향에 따른 Ru 입자의 분산도를 살펴보기 위해 ${\gamma}-Al_2O_3$${\alpha}-Al_2O_3$ 담체를 적용한 결과, 비표면적이 작은 ${\alpha}-Al_2O_3$ 담체 표면에서 Ru 분산도가 ${\gamma}-Al_2O_3$ 담체에 비해 높았다. 이는 기공이 발달하여 비표면적이 넓은 ${\gamma}-Al_2O_3$ 담체는 소량의 Ru을 고분산 담지 시 담체 표면보다는 기공 내에 담지 되는 양이 많아 실제 반응 시 반응에 참여하는 표면 활성 금속양이 적음을 알 수 있다. 특히, 선택적 산화반응과 같이 표면에서 빠른 반응이 일어나는 경우, 기공 내부의 활성금속이 반응에 참여하기 어려워 반응 활성이 낮음을 PrOx 반응실험을 통해 확인할 수 있었다. PrOx test 조건은 GHSV 250000~60000, 온도는 80~200도, 람다값은 2~4로 성능 비교하여 실험 하였다. PrOx의 성능평가 결과 담체를 ${\alpha}-Al_2O_3$를 사용하여 deposition-precipitation방법으로 제조한 pH6.5 촉매에서 $100{\sim}160^{\circ}C$에서 90%의 가장 높은 CO conversion을 가지고 18%의 선택도를 가졌다.

  • PDF

RuTi 촉매의 소성온도가 NH3-SCO 반응활성에 미치는 영향 (The Effect of Calcination Temperature of RuTi Catalysts on the Reaction Activity of NH3-SCO)

  • 신중훈;홍성창
    • 공업화학
    • /
    • 제31권2호
    • /
    • pp.200-207
    • /
    • 2020
  • 본 연구에서는, NH3-SCO (selective catalytic oxidation) 반응에서 RuTi 촉매 제조 시 소성온도에 따른 영향을 확인하였다. RuTi 촉매는 습윤 함침법을 이용하여 제조되었고, 공기 분위기에서 400~600 ℃로 4 h 동안 소성되었다. 촉매는 RuTi x00로 표기되었으며, x00는 소성온도를 의미한다. XRD, TEM, H2-TPR 분석에 따르면, RuTi x00 촉매는 소성온도가 증가할수록 활성금속의 분산도가 감소하는 것을 나타내었다. XPS, NH3-TPD 분석을 통하여, 낮은 분산도를 갖는 촉매는 표면 흡착 산소 종(Oβ) 및 NH3 흡착량이 감소하는 특성을 나타내었다. 따라서 RuTi 400 촉매는 TiO2 표면에 활성금속이 가장 잘 분산되었으며, NH3 제거 효율이 가장 우수하였다.

VOCs 산화반응에서 Pt 촉매에 대한 조촉매의 영향 (Effect of promoter on platinum catalyst for oxidation of VOCs)

  • 김문찬;신진실
    • 분석과학
    • /
    • 제19권5호
    • /
    • pp.422-432
    • /
    • 2006
  • VOC는 대기오염의 주원인으로서 인식되어왔다. 촉매산화는 저온에서 높은 효율을 나타내기 때문에 VOCs 제거를 위한 가장 중요한 처리기술중 하나이다. 이 연구에서는 ${\gamma}-Al_2O_3$ 담체에 Pt, Pt-Ru 그리고 Pt-Ir을 담시지켜 촉매를 제조하였다. 반응물로서 Xylene, toluene 그리고 MEK를 사용하였다. 단일 또는 두 가지 이상의 촉매들은 함침법에 의해 준비하였고, XRD, XPS, TEM, BET 분석을 통하여 특성화하였다. 그 결과 Pt-Ru, Pt-Ir 촉매는 Pt 촉매에 비해 더 높은 전환율을 나타내었다. ${\gamma}-Al_2O_3$ 담체상에서 Pt-Ir 촉매가 가장 높은 전환율을 보인다. VOCs산화에서, Pt-Ru, Pt-Ir 촉매는 다양한 활성점을 나타내었고 그것은 Pt의 metal 영역를 강화시켰다. 따라서 두 가지 금속으로 이루어진 촉매가 단일 금속으로 이루어진 촉매에 비해 VOCs 전환율이 더 높았다. 이 연구에서 Pt에 소량의 Ru, Ir 첨가는 VOCs의 산화반응을 증진시켰다.

$N_2O$ 추진제 분해 촉매의 고온 내열 특성 연구 (Study on the Characteristics of Thermal-resistance Catalyst for $N_2O$ Propellant Decomposition)

  • 백진오;김태규
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.373-376
    • /
    • 2010
  • 아산화질소를 추진제로 사용하기 위해 아산화질소의 촉매 분해 특성과 고온 하에서 내열성을 연구하였다. 기존의 Ru 촉매의 내열성을 개선하기 위해 추가적으로 $Al_2O_3$ 지지체에 Si를 담지시킨 후 Ru을 담지하였다. 관형 반응기를 이용하여 반응온도에 따른 아산화질소의 전환율을 측정하고, Si 첨가에 의한 분해특성에 대해서 연구하였다. 반응온도가 높을수록 전환율이 우수했고, Ru/$Al_2O_3$-Si 촉매가 Ru/$Al_2O_3$ 촉매보다 높은 전환율을 보였다.

  • PDF

Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가 (Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites)

  • 이인호;권해두;최성호
    • 분석과학
    • /
    • 제26권1호
    • /
    • pp.42-50
    • /
    • 2013
  • 이 논문은 센서 및 연료전지에 사용할 수 있는 $Pt-Ru@TiO_2-H$ 나노구조체촉매의 제조 및 전기화학적 촉매의 특성에 대한 것이다. 이 $Pt-Ru@TiO_2-H$ 나노구조체촉매는 주형제인 폴리스틸렌볼(PSB)을 제조하고, 이 주형제의 표면에 졸-겔 반응을 통해 $TiO_2$를 코팅한 후, $Pt^{4+}$$Ru^{3+}$의 환원에 의해 제조하였다. 제조된, $Pt-Ru@TiO_2-H$ 나노구조체촉매는 전자투과현미경(TEM), X-선 회절(XRD)와 원소분석에 의해 특성평가 하였고, $Pt-Ru@TiO_2-H$의 전기화학적 촉매특성은 에탄올, 메탄올, 도파민, 아스크로브 산, 프로말린과 글루코오즈의 산화-환원 능력에 의해 평가 하였다. 이 $Pt-Ru@TiO_2-H$ 나노구조체촉매는 바이오분자에 대해 전기화학적촉매 특성을 나타내어, 연료전지 전극 또는 비효소바이오센서에 사용 될 것으로 기대된다.

방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성 (Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC))

  • 김상겸;박지윤;황순철;이도균;이상헌;이영우;한문희
    • 청정기술
    • /
    • 제19권3호
    • /
    • pp.320-326
    • /
    • 2013
  • 방사선환원법을 통해 탄소지지체(Vulcan XC-72$^{(R)}$)를 기반으로 한 나노사이즈의 PtRu-Ni/VC와 PtRu-Sn/VC를 합성하였다. 합성된 촉매는 투과전자현미경(transmission electron microscopy, TEM), 주사전자현미경-에너지 분산형 분석기(scanning electron microscopy-energy dispersive spectroscopy, SEM-EDS), X선 광전자 분광기(X-ray photoelectron spectroscopy, XPS), X선 회절(X-ray diffraction, XRD)을 통해 촉매의 표면과 구조 및 성분에 대해 특성평가 되어졌으며, 촉매 전기화학적 효율 및 안정성 대한 평가를 위하여 산소 환원 반응, 메탄올 산화반응과 CO 흡착 효율을 E-TEK사에서 상용촉매로 판매되는 PtRu/VC$^{(R)}$ (60 wt% PtRu)와 비교하였으며, 이에 대한 요약은 다음과 같다. 수소 흡 탈착 반응 : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). 메탄올산화반응 : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). 단위셀 효율 : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK).

Ru-Mg-Al-oxide 촉매 상에서 크라프트 리그닌의 저분자화 연구 (Depolymerization of Kraft Lignin over a Ru-Mg-Al-oxide Catalyst)

  • 김한웅;수잔 올리비아;제정호
    • 청정기술
    • /
    • 제27권2호
    • /
    • pp.190-197
    • /
    • 2021
  • 펄프 및 제지산업에서 목재의 셀룰로오스 성분 활용 후 남는 부산물인 크라프트 리그닌(kraft lignin)은 촉매적 저분자화 공정을 통해 바이오연료나 고부가가치 페놀 단량체로 전환될 수 있다. 본 연구에서는 크라프트 리그닌의 효율적인 저분자화를 위한 촉매로 수소화 금속 및 산-염기점을 동시에 지니는 Ru-Mg-Al-oxide 복합 촉매를 제조하고, 리그닌 분해 성능을 평가하고자 하였다. 촉매 내 다양한 활성점들(산점, 염기점, 수소화 금속)이 리그닌 분해 반응에 미치는 영향을 파악하기 위해 MgO, Mg-Al-oxide, Ru-Mg-Al-oxide의 세 가지 촉매를 제조하여 초임계 에탄올 용매 상에서 리그닌 분해 반응을 수행하였고, 리그닌 분해 성능은 바이오오일(bio-oil) 수율 및 분자량, 그리고 페놀계 단량체 수율을 통해 평가하였다. 그 결과, Ru-Mg-Al-oxide 촉매가 다양한 활성점들의 시너지 효과로 인해 가장 높은 수율의 바이오오일 및 페놀 단량체들을 생산한다는 것을 확인하였다. Ru-Mg-Al-oxide 촉매 상에서 분해 효율을 최적화하기 위해 다양한 반응 조건(온도, 시간, 촉매양)에 따른 분해 효율을 평가하였고, 최종적으로 반응온도 350 ℃, 리그닌 대비 촉매 비율 10%, 4 h 반응을 통해 72%의 높은 바이오오일 수율과 무촉매 대비 3.5배 이상 증가한 페놀 단량체를 생산할 수 있었다.