• Title/Summary/Keyword: Ru (Ruthenium)

Search Result 187, Processing Time 0.022 seconds

Synthesis and Characterization of an Organometallic Ruthenium Complex Bearing 4-Picolinic Acid Ligands for Dye-Sensitized Solar Cells (DSSCs) (피콜리닉산 리간드를 갖는 염료감응형 태양전지용 루테늄 염료 합성과 특성분석)

  • Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.192-197
    • /
    • 2016
  • A novel heteroleptic ruthenium(II) complex bearing a 4-picolinic acid unit as anchoring ligands (trans-dithiocyanato bis(4-picolinic acid)ruthenium(II) (trans-H1)) was synthesized and its chemical structure was identified by $^1H$-NMR, FT-IR and mass spectroscopy. The optical, thermal, electrochemical and dye adsorption properties of trans-H1 dye were investigated and compared with those of the gold standard ruthenium complex, Ru(4,4'-dicarboxy-2,2'-bipyridine)$_2cis(NCS)_2$ (N3). DSSCs based on trans-H1 dyes were examined under the illumination of AM 1.5 G, $100mWcm^{-2}$ and exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.46 V, a short-circuit current ($J_{SC}$) of $4.10mA{\cdot}cm^{-2}$, a fill factor (FF) of 60.4%, and a conversion efficiency (PCE) of 1.14%.

Optical Hydrogen Sensor Based on Gasochromic $RuO_2{\cdot}xH_2O$ Thin Film ($RuO_2{\cdot}xH_2O$ 박막의 가스채색 현상을 이용한 수소검지 광센서)

  • Cheong, Hyeon-Sik;Jo, Hyun-Chol;Kim, Kyung-Moon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • We studied the electrochromic properties of hydrated amorphous ruthenium oxide ($RuO_2{\cdot}xH_2O$) thin films using in-situ Raman spectroscopy during electrochemical charging/discharging cycles. We have found that the principal effect of hydrogen insertion into $RuO_2{\cdot}xH_2O$ is reduction of $Ru^{4+}\;to\;Ru^{3+}$, and not formation of new bonds involving hydrogen. We compared the changes in the Raman spectrum of a gasochromic $Pd/RuO_2{\cdot}xH_2O$ film as it is exposed to hydrogen gas with that of electrochemical hydrogen insertion. We tested the changes in the optical transmission of the $Pd/RuO_2{\cdot}xH_2O$ film when exposed to hydrogen gas.

Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation

  • Kim, Se-Chul;Zhang, Ting;Park, Jin-Nam;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3331-3337
    • /
    • 2012
  • Ru-modified Pt nanoparticles of various sizes on platelet carbon nanofiber toward methanol oxidation were investigated in terms of particle size effect. The sizes of Pt nanoparticles, prepared by polyol method, were in the range of 1.5-7.5 nm and Ru was spontaneously deposited by contacting Pt nanoparticles with the Ru precursor solutions of 2 and 5 mM. The Ru-modified Pt nanoparticles were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The methanol oxidation activities of Ru-modified Pt nanoparticles, measured using cyclic voltammetry and chronoamperometry, revealed that when the Pt particle size was less than 4.3 nm, the mass specific activity was fairly constant with an enhancement factor of more than 2 at 0.4 V. However, the surface area specific activity was maximized on Pt nanoparticles of 4.3 nm modified with 5 mM Ru precursor solution. The observations were discussed in terms of the enhancement of poison oxidation by Ru and the population variation of Pt atoms at vertices and edges of Pt nanoparticles due to selective deposition of Ru on the facets of (111) and (100).

Chemistry of Ruthenium Hydridonitrosyl Complexes Containing Chelating Triphosphines III-Structure and Fluxional Mechanism of fac-RuH(NO)(ttp)

  • Ik Mo Lee;Yeoug Joong Kim;Ook Jae Cho;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.504-507
    • /
    • 1992
  • fac-RuH(NO)(ttp) is fluxional in the range between 180 K and 303 K. The structures involved in this fluxional process are found to be a mixture of two square pyramids and a trigonal bipyramid from the low temperature NMR spectra and the line shape analysis using DNMR 3 program and the activation parameters of this process were determined by using the simulated data. The mechanism of this fluxional process is proposed to be a pathway known as Turnstile Rotation.

NMR Study on Ru(II) Complexes Containnig 2,$2^{\prime} :\;6^{\prime},2^{\prime}^{\prime}$-terpyridine

  • Seok, Won K.;Moon, Sung W.;Kim, Mee Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1207-1210
    • /
    • 1998
  • The diamagnetic six-coordinate ruthenium polypyridyl complexes have been prepared and assigned. 1H NMR spectral studies were used to unravel the ligand field strength and the basicity on the chemical shift to the particular proton of ligand L in [(tpy)(L)RuⅡ(X)]+/2+ (L=bpy, bqi, dmbpy, phen; X=Cl, CN, N3, NCCD3, NO2, SCN) complexes.

Synthesis of Novel Electrochemiluminescent Polyamine Dendrimers Functionalized with Polypyridyl Ru(II) Complexes and Their Electrochemical Properties

  • Lee, Do-Nam;Park, Hee-Sang;Kim, Eun-Hwa;Jun, Young-Moo;Lee, Ja-Young;Lee, Won-Yong;Kim, Byeong-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • Polyamine dendrimers functionalized with electrochemiluminescent (ECL) polypyridyl Ru(II) complexes, dend-$[CO-(CH_2)_3-mbpy{\cdot}Ru(L)_2]_3(PF_6)_6$ (dend: N$(CH_2CH_2NH)_3$-, L: bpy, o-phen, phen-Cl, DTDP), were synthesized through the complexation of dendritic polypyridyl ligands to Ru(II) complexes. Their electrochemical redox potentials, photoluminescence (PL), and relative ECL intensities were studied. The ECL emissions produced by the reaction between the electro-oxidized $Ru^{3+}$ species of polyamine dendrimers and tripropylamine as a coreactant were measured in a static system with potential cycles between 0.8 and 1.3 V or through flow injection analysis with a potential of +1.3 V, and were compared to that of $[Ru(o-phen)_3](PF_6)_2{\cdot}Dend-[CO-(CH_2)_3-mbpy{\cdot}Ru(bpy)_2]_3(PF_6)_6$ showed an ECL intensity that was two-fold greater than that of the reference complex $[Ru(o-phen)_3](PF_6)_2$.

Study on Self-Organized Ru Dots Using ALD and Low Temperature Rapid Thermal Annealing Process (ALD와 저온 RTA를 이용한 자가정렬 Ru 응집체의 제조와 물성)

  • Park, Jongseung;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.557-562
    • /
    • 2012
  • Self-organized ruthenium (Ru) dots were fabricated by $400^{\circ}C$ RTA (rapid thermal annealing) and ALD (atomic layer deposition). The dots were produced under the $400^{\circ}C$ RTA conditions for 10, 30 and 60 seconds on all Si(100)/200 nm-SiO2, glass, and glass/fluorine-doped tin oxide (FTO) substrates. Electrical sheet resistance, and surface microstructure were examined using a 4-point probe and FE-SEM (field emission scanning electron microscopy). Ru dots were observed when a 30 nm-Ru layer on a Si(100)/200 nm-SiO2 substrate was annealed for 10, 30 and 60 seconds, whereas the dots were only observed on a glass substrate when a 50 nm-Ru layer was annealed on glass. For a glass/FTO substrate, RTA <30 seconds was needed for 30 nm Ru thick films. Those dots can increase the effective surface area for silicon and glass substrates by up to 5-44%, and by 300% for the FTO substrate with a < $20^{\circ}$ wetting angle.

Kinetics and Mechanism of Ruthenium(III) Catalyzed Oxidation of Butanone and Uncatalyzed Oxidation of Cychlohexanone by Cerium(IV) in Acid Sulphate Medium

  • Sharma, Priyamvada;Hemkar, Shalini;Khandelwal, C.L.;Sharma, P.D.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The kinetics of ruthenium(III) chloride catalyzed oxidation of butanone and uncatalyzed oxidation of cyclohexanone by cerium(IV) in sulphuric acid medium have been studied. The kinetic rate law(I) in case of butanone conforms to the proposed mechanism. $$-\frac{1}{2}\frac{d[Ce^{IV}]}{dt}=\frac{kK[Ru^{III}][butanone]}{1+K[butanone]}$$ (1). However, oxidation of cyclohexanone in absence of catalyst accounts for the rate eqn. (2). $$-\frac{1}{2}\frac{[Ce^{IV}]}{dt}=\frac{(k_1+k_1K^'[H^+])[Ce^{IV}][Cyclohexanone]}{1+K_3[HSO_4^-]}$$ (2) Kinetics and activation parameters have been evaluated conventionally. Kinetically preferred mode of reaction is via ketonic and not the enolic forms.

In-situ Raman Spectroscopy of Amorphous Hydrous $RuO_2$ Thin Films

  • Hyeonsik Cheong;Jung, Bo-Young;Lee, Se-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.49-51
    • /
    • 2003
  • Amorphous hydrous ruthenium oxide thin films have attracted much interest owing to the possibility of using this material in electrochemical supercapacitors. Recently, it was found that this material is also electrochromic: during the charging/discharging cycle, the optical transmittance of the thin film is modulated. The physical and chemical origin of this phenomenon is not fully understood yet. In this work, we performed in-situ Raman spectroscopy measurements on amorphous hydrous ruthenium oxide thin films during the charging/discharging cycles. Unambiguous changes in the Raman spectrum were observed as protons were injected or extracted from the thin film. When the samples were annealed to reduce the water content, there is a consistent trend in the Raman spectrum. The origins of the Raman features and their relation to the electrochromic and/or supercapacitor characteristics is discussed.

Development of an electrochemi-Iuminescenece device (전기화학형 발광소자 개발)

  • Kwon, Hyuk-Moon;Sung, YouI-Moon;Ji, Jong-Gook;Lee, Myung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.141-144
    • /
    • 2009
  • In this study, used simplest sandwich cells containing $Ru2^+$ liquid electrolytes in order to clarify the role of nanoporous $TiO_2$ electrodes. And, the cell structure is as follow: $F:SnO_2$ glass/ nanoporous $TiO_2$/ tris(2,2'-bipyridy)ruthenium(ll) colplex [$Ru(bpy)_3(PF_6)_2$] in acetonitrile/ $F:SnO_2$ glass. The result, we found that ECL intensities increased rapidly by use of cathodes with nanoporous $TiO_2$ layers. And, porous $TiO_2$ electrodes were confirmed to be efficient for ECL devices as well as solar cell devices. It is thought that the increases in the ECL intensities may be associated with both formation of $Ru^+$ in porous $TiO_2$ electrodes and the process taking place after reduction of $Ru^+$ which occurs in the nanoporous electrodes.

  • PDF