• Title/Summary/Keyword: Routing path optimization

Search Result 95, Processing Time 0.021 seconds

Space-Stretch Tradeoff Optimization for Routing in Internet-Like Graphs

  • Tang, Mingdong;Zhang, Guoqiang;Liu, Jianxun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.546-553
    • /
    • 2012
  • Compact routing intends to achieve good tradeoff between the routing path length and the memory overhead, and is recently considered as a main alternative to overcome the fundamental scaling problems of the Internet routing system. Plenty of studies have been conducted on compact routing, and quite a few universal compact routing schemes have been designed for arbitrary network topologies. However, it is generally believed that specialized compact routing schemes for peculiar network topologies can have better performance than universal ones. Studies on complex networks have uncovered that most real-world networks exhibit power-law degree distributions, i.e., a few nodes have very high degrees while many other nodes have low degrees. High-degree nodes play the crucial role of hubs in communication and inter-networking. Based on this fact, we propose two highest-degree landmark based compact routing schemes, namely HDLR and $HDLR^+$. Theoretical analysis on random power-law graphs shows that the two schemes can achieve better space-stretch trade-offs than previous compact routing schemes. Simulations conducted on random power-law graphs and real-world AS-level Internet graph validate the effectiveness of our schemes.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.735-748
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

A Development of Wire Path Searching Module Using Extended RCA Method (Extended RCA법을 이용한 자동차 전장 경로 설정 모듈의 개발)

  • 임성혁;이수홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.33-44
    • /
    • 1996
  • This study deals with the development of wire path searching module as a part of automobile wire harness design system. Wire path searching module manages the free space, finds transition locations, and creates bundle paths to dramatically reduce a tedious iterative routing process which results in easy optimization of the bundle paths. A prime policy in the system configuration is to compromise between man's and computer's ability, and make it possible a designer's leading role in designing process. Human input is indispensable to cope with the special cases which were not considered in the initial design stage of the system. In this study, we improve the previous shortest-path-finding algorithm, (VGraph and RCA method) into a new method called Extended RCA. Bundles, connectors and transitions are handled as objects so one can manage and modify physical properties of the objects easily. Therefore a verification is allowed at any desired stage of design. The reuse of previous result is facilitated by using Dependency Structure, which represents the mutual relations among connectors, transitions, and bundles. Dependency Structure makes it possible the elimination of redundant calculating process, and consequently shorter routing time.

  • PDF

An Energy- Efficient Optimal multi-dimensional location, Key and Trust Management Based Secure Routing Protocol for Wireless Sensor Network

  • Mercy, S.Sudha;Mathana, J.M.;Jasmine, J.S.Leena
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3834-3857
    • /
    • 2021
  • The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.

Switch Architecture and Routing Optimization Strategy Using Optical Interconnects for Network-on-Chip (광학적 상호연결을 이용한 네트워크-온-칩에서의 스위치 구조와 라우팅 최적화 방법)

  • Kwon, Soon-Tae;Cho, Jun-Dong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.25-32
    • /
    • 2009
  • Recently, research for Network-on-chip(NoC) is progressing. However, due to the increase of system complexity and demand on high performance, conventional copper-based electrical interconnect would be faced with the design limitation of performance, power, and bandwidth. As an alternative to these problems, combined use of Electrical Interconnects(EIs) and Optical Interconnects(OIs) has been introduced. In this paper we propose efficient routing optimization strategy and hybrid switch architecture, which use OIs for critical path and EIs for non-critical path. The proposed method shows up to 25% performance improvement and 38% power reduction.

A Shortest Path Routing Algorithm using a Modified Hopfield Neural Network (수정된 홉필드 신경망을 이용한 최단 경로 라우팅 알고리즘)

  • Ahn, Chang-Wook;Ramakrishna, R.S.;Choi, In-Chan;Kang, Chung-Gu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2002
  • This paper presents a neural network-based near-optimal routing algorithm. It employs a modified Hopfield Neural Network (MHNN) as a means to solve the shortest path problem. It uses every piece of information that is available at the peripheral neurons in addition to the highly correlated information that is available at the local neuron. Consequently, every neuron converges speedily and optimally to a stable state. The convergence is faster than what is usually found in algorithms that employ conventional Hopfield neural networks. Computer simulations support the indicated claims. The results are relatively independent of network topology for almost all source-destination pairs, which nay be useful for implementing the routing algorithms appropriate to multi -hop packet radio networks with time-varying network topology.

RNG-based Scatternet Formation Algorithm for Small-Scale Ad-Hoc Network (소규모 분산망을 위한 RNG 기반 스캐터넷 구성 알고리즘)

  • Cho, Chung-Ho
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.17-29
    • /
    • 2007
  • This paper addresses a RNG based scatternet topology formation, self-healing, and routing path optimization for small-scale distributed environment, which is called RNG-FHR(Scatternet Formation, self-Healing and self-Routing path optimization) algorithm. We evaluated the algorithm using ns-2 and extensible Bluetoothsimulator called blueware to show that RNG-FHR does not have superior performance, but is simpler and more practical than any other distributed algorithms from the point of depolying the network in the small-scale distributed dynamic environment due to the exchange of fewer messages and local control. As a result, we realized that even though RNG-FHR is unlikely to be possible for deploying in large-scale environment, it surely can be deployed for performance and practical implementation in small-scale environment.

  • PDF

A Design of Routing Path and Wavelength Assignment with Minimum Number of Wavelengths in WDM Optical Transport Network (WDM 광전달망에서 최소 파장 수를 갖는 경로설계 및 파장할당)

  • 박구현;우재현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1883-1892
    • /
    • 1998
  • This paper considers the efficient design of routing path and wavelength assignment asignment in the sigle-hop WDM optical transport networks. The connecton demands between node-pairs are given and a connection must be made by only one lightpath. It is assumed that no wavelength conversion is allowed and the physical topology of the network is given. This paper proposes a method to find the routes of lightpaths and assign wavelengths to the routes, which minimizes the number of total wavelength to satisfy all connection demands. We establish a new optimization model that finds the minimum number of wavelengths. A heuristic algorithm with polynomial iterations is developed for the problem. The algorithm is implemented and applied to the netowrks with real problem size. The results of the application are compared with the commericial optimization solver, GAMS/OSL and Wauters & Demeester [8].

  • PDF

A Study on Mobile IP Systems for Military Information Systems (이동 IP 체계에 대한 군 정보체계 활용방안 연구)

  • 이태종
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.2
    • /
    • pp.73-89
    • /
    • 1996
  • This paper suggests the new IP, SIMIP(Simple Mobile IP), which supports a continuous mobility between a static host and a mobile host in the static TCP/IP LAN environment where mobile hosts are overlayed with cells. For designing a mobile protocol, routing optimization is very important, and it is directly related to the management mechanism of a mobile host's location information. When the mobile hosts' location information are centralized, the network has high risk when a centralized device fails. On the other hand, when they are distributed, the above problems are solved. But it requires complicated techniques in order to search the encapsulated addresses. SIMP centralizes mobile hosts' location information, minimizes the risk by automatically substituting the failed default mobile router with one of the multiple general mobile routers, and supports the optimal routing path through "default mobile router path alternation" Then since SIMIP isn't reasonable the operations informations to the chief in military operations room.ions room.

  • PDF