• Title/Summary/Keyword: Rounded edge

Search Result 42, Processing Time 0.031 seconds

Formulation of Generalized Hoek-Brown Model and Development of Rounded Hoek-Brown Model (일반화된 Hoek-Brown 모델의 정식화 및 Rounded Hoek-Brown 모델의 개발)

  • Kim Bum-Sang;Kwon O-Soon;Jang In-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.37-43
    • /
    • 2005
  • Hoek-Brown model, which was developed in order to predict the behavior of rock mass, has widely been utilized and revised by many researchers to solve various problems encountered in tunnelling and slope stability analysis. However, there is no schematic investigation on the application of the Hoek-Brown model to numerical analysis including finite element simulations. In this paper the Hoek-Brown model was formulated as a constitutive model according to the procedure of generalized plasticity theory, and a Rounded Hoek-Brown model, which could overcome the numerical difficulties by modifying the edge part of the yield surface as a curve shape, was newly proposed. The new model could satisfy the requirements as an elasto-plastic constitutive soil model and follow the yield surface of the original Hoek-Brown model in the compression mode. The constitutive equation for the proposed model herein was established and presented to be applicable to the generalized nonlinear finite element analysis.

A Study on the Contact Shape for Failure Mitigation (손상저감을 위한 접촉부형상의 고찰)

  • Kim, Hyung-Kyu;Yoon, Kyung-Ho;Kang, Heung-Seok;Song, Kee-Nam;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1068-1073
    • /
    • 2003
  • Method for contact failure mitigation is studied in this paper. The focus is laid on the contact shape that eventually influences the internal stresses. Contact mechanics is consulted within the frame of plane problem. Hertzian contact, rounded punch and uniform traction profiles are considered. Frictional as well as frictionless contact is also considered. As results, the higher traction profile induced by the rounded punch reveals the greatest among the considered shapes. Therefore, it is suggested to increase the edge radius as large as possible if a contact body of punch shape needs to be designed. It is also found that uniform traction cannot always provide the solution of contact failure mitigation.

  • PDF

Behaviour of edge crack propagation under non-symmetric contact tractions (비대칭 접촉하중에 의한 표면균열 전파거동)

  • Kim, Hyung-Kyu;Kang, Heung-Seok;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.144-150
    • /
    • 2001
  • Considered is non-symmetric contact traction induced by the tilting of a contact body and/or by a far field bulk tensile load to the other body. The problem is under the regime of plane strain. General profile of the contact end is incorporated and partial slip condition is supposed. As an example contact configuration, an indentation of a punch with rounded corners onto a half plane is studied. The variation of the internal stress field due to the tilting and the bulk tension is investigated. An edge crack problem is analyzed to examine the influence of the non-symmetric traction. It is shown that the tilting of a punch does not influence the behaviour of the crack. Rather, the effect of the bulk tension on the cracking behaviour is found considerable.

  • PDF

A Finite Element Analysis of the Stagnation Point on the Tool Edge (공구끝단에서의 정체점에 관한 유한요소해석)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.901-904
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a flew manometer. In such case, a basic understanding of the mechanism on the micro-machining process is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

  • PDF

A STUDY ON THE ATTRITION OF MAXILLARY CENTRAL INCISORS IN KOREAN (한국인 상악중절치의 교모에 관한 연구)

  • Park, Chong-Wha
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.32-37
    • /
    • 1978
  • The purpose of this study was to apply the position, the form and the angle of the attrition in the natural maxillary central incisors shown on the labial surface to the artificial teeth in the field of prosthetic dentistry. So we should exactly alter the molds of artificial teeth in individual cases in order to make artificial teeth more natural. 226 extracted teeth of the maxillary central incisors were chosen as materials. I have exactly examined the teeth with a magnifying glass and a circular graduator under concentrated light. The observation brought me the following results: 1) The attrition was most prevailing at the range from the mesial angle to the middle part of cutting edge in the left maxillary central incisor, and distal angle of cutting edge in the right maxillary central incisor. 2) On the attrite form of both angles, the angulated form was more than 4 times as frequent as rounded form in the mesial angle, and almost equal in the distal angle. 3) On the attrite form of cutting edge, mesial attrite form including mesial angle was most frequent in the left maxillary central incisor, and distal attrite form including distal angle in the right maxillary central incisor. 4) The angle made by the labial surface and the attrite surface was about $39^{\circ}$, and more than 70% of the total examined teeth were included at the range from $31^{\circ}\;to\;50^{\circ}$. 5) None attrite form at the cutting edge was about 12% and completely attrite form at the cutting edge was about 27% of examined teeth.

  • PDF

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN ALL-CERAMIC CROWNS WITH VARIOUS FINISH LINE DESIGNS AND INCISAL REDUCTIONS UNDER DIFFERENT LOADING CONDITIONS (전부 도재관을 위한 지대치의 마무리선 형태와 절단연 삭제량 및 교합력 작용점에 따른 응력 분포에 관한 삼차원 유한요소법적 연구)

  • Koh, Eun-Suk;Lee, Sun-Hyang;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.742-766
    • /
    • 1997
  • The purpose of this study was to determine the effect of finish line design, amount of incisal reduction, and loading condition on the stress distribution in anterior all-ceramic crowns. Three-dimensional finite element models of an incisor all-ceramic crown with 3 different finish line designs : 1) shoulder with sharp line angle 2) shoulder with rounded line angle 3) chamfer : and 2 different incisal reductions : 2mm and 4mm were developed. 300 N force with the direction of 45 degree to the long axis of the tooth was applied at 3 different positions : A) incisal 1/3, B) incisal edge, C) cervical 1/5. Stresses developed in ceramic and cement were analyzed using three-dimensional finite element method. The results were as follows : 1. Stresses were concentrated in the margin region, which were primarily compressive in the labial and tensile in the lingual. 2. Stresses were larger in the area near line angle than on the crown surface of the margin region. In case of shoulder with sharp line angle, stresses were highly concentrated in the porcelain near line angle. 3. At the interface between porcelain and cement and at the porcelain above the margin on crown surface, stresses were the highest in chamfer, and decreased in shoulder with sharp line angle and shoulder with rounded line angle, respectively. 4. At the interface between cement and abutment on crown surface, stresses were the highest in shoulder with sharp line angle, and decreased in shoulder with rounded line angle and chamfer, respectively. 5. The amount of incisal reduction had little influence on the stress distribution in all-ceramic crowns. 6. When load was applied at the incisal edge, higher stresses were developed in the margin region and the incisal edge than under the other loading conditions. 7. When load was applied at the cervical 1/5, stresses were very low as a whole.

  • PDF

A Study on the Critical Depth of Cut in Ultra-precision Machining (초정밀 절삭에 있어서 임계절삭깊이에 대한 연구)

  • Kim, Kug-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.126-133
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a few nanometer. In such case, a basic understanding of the mechanism on the micro-machining process is is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

DESIGN OF HIGH LIFT FLAP WITH OPTIMIZATION TECHNIQUE (최적화 기법을 이용한 고양력 플랩 설계)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.227-228
    • /
    • 2008
  • In the present paper, fowler flap was optimized to maximize the lift with response surface method. Leading edge shape and the gap between main airfoil and flap, were optimized and the aerodynamic characteristics was improved considerably. The optimized flap has more rounded leading edge and bigger gap. Before angle of attack, $10^{\circ}$, lift and drag are improved and the optimized flap shows similar aerodynamic characteristics to the original flap. The flow condition for optimization was angle of attack, $10^{\circ}$, Mach number, 0.2, flap deflection, $40^{\circ}$.

  • PDF

DESIGN OF HIGH LIFT FLAP WITH OPTIMIZATION TECHNIQUE (최적화 기법을 이용한 고양력 플랩 설계)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.227-228
    • /
    • 2008
  • In the present paper, fowler flap was optimized to maximize the lift with response surface method. Leading edge shape and the gap between main airfoil and flap, were optimized and the aerodynamic characteristics was improved considerably. The optimized flap has more rounded leading edge and bigger gap. Before angle of attack, $10^{\circ}$, lift and drag are improved and the optimized flap shows similar aerodynamic characteristics to the original flap. The flow condition for optimization was angle of attack, $10^{\circ}$, Mach number, 0.2, flap deflection, $40^{\circ}$.

  • PDF

The importance of corner sharpness in the BARC test case: A numerical study

  • Chiarini, Alessandro;Quadrio, Maurizio
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.43-58
    • /
    • 2022
  • The BARC flow is studied via Direct Numerical Simulation at a relatively low turbulent Reynolds number, with focus on the geometrical representation of the leading-edge (LE) corners. The study contributes to further our understanding of the discrepancies between existing numerical and experimental BARC data. In a first part, rounded LE corners with small curvature radii are considered. Results show that a small amount of rounding does not lead to abrupt changes of the mean fields, but that the effects increase with the curvature radius. The shear layer separates from the rounded LE at a lower angle, which reduces the size of the main recirculating region over the cylinder side. In contrast, the longitudinal size of the recirculating region behind the trailing edge (TE) increases, as the TE shear layer is accelerated. The effect of the curvature radii on the turbulent kinetic energy and on its production, dissipation and transport are addressed. The present results should be contrasted with the recent work of Rocchio et al. (2020), who found via implicit Large-Eddy Simulations at larger Reynolds numbers that even a small curvature radius leads to significant changes of the mean flow. In a second part, the LE corners are fully sharp and the exact analytical solution of the Stokes problem in the neighbourhood of the corners is used to locally restore the solution accuracy degraded by the singularity. Changes in the mean flow reveal that the analytical correction leads to streamlines that better follow the corners. The flow separates from the LE with a lower angle, resulting in a slightly smaller recirculating region. The corner-correction approach is valuable in general, and is expected to help developing high-quality numerical simulations at the high Reynolds numbers typical of the experiments with reasonable meshing requirements.