• 제목/요약/키워드: Rough Sets

검색결과 96건 처리시간 0.021초

러프셋에 기반한 정보필터링 웹에이전트 모듈 설계 (Design of Web Agents Module for Information Filtering Based on Rough Sets)

  • 김형수;이상부
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.552-556
    • /
    • 2004
  • 본 논문은 대용량의 데이터베이스 내에서 유용한 정보를 검색하기 위해 웹 기반하에 적응형 정보추출 에이전트 모듈 설계이다. 인터넷을 통한 정보 검색이 일반화됨에 따라 검색시간의 최소화를 기하면서 사용자의 요구조건에 맞는 유용한 정보 제공이 필요하다. 구축되는 지식베이스 시스템의 스키마 구성요소의 도메인이 이진 검색이 가능한 필드 도메인이 있는 가하면 그렇지 않은 불확실한 도메인도 존재한다. 최초의 대용량 지식베이스에서 사용자의 자연어 질의어에 대해 러프셋의 리턱트롤 통해 최소지식베이스를 생성한 후, 축소된 스키마의 도메인의 불확실성찬 값에 대한 연산을 처리는 퍼지합성 연산처리 모듈에 의해 소프팅 컴퓨팅이 수행토록 설계하였다.

  • PDF

Design and Evaluation of a Rough Set Based Anomaly Detection Scheme Considering the Age of User Profiles

  • Bae, Ihn-Han
    • 한국멀티미디어학회논문지
    • /
    • 제10권12호
    • /
    • pp.1726-1732
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents an efficient rough set based anomaly detection method that can effectively identify a group of especially harmful internal attackers - masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on this, the used pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with the age of the user profile. The performance of the proposed scheme is evaluated by using a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed scheme that considers the age of user profiles.

  • PDF

Scalable Approach to Failure Analysis of High-Performance Computing Systems

  • Shawky, Doaa
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.1023-1031
    • /
    • 2014
  • Failure analysis is necessary to clarify the root cause of a failure, predict the next time a failure may occur, and improve the performance and reliability of a system. However, it is not an easy task to analyze and interpret failure data, especially for complex systems. Usually, these data are represented using many attributes, and sometimes they are inconsistent and ambiguous. In this paper, we present a scalable approach for the analysis and interpretation of failure data of high-performance computing systems. The approach employs rough sets theory (RST) for this task. The application of RST to a large publicly available set of failure data highlights the main attributes responsible for the root cause of a failure. In addition, it is used to analyze other failure characteristics, such as time between failures, repair times, workload running on a failed node, and failure category. Experimental results show the scalability of the presented approach and its ability to reveal dependencies among different failure characteristics.

퍼지균등화와 러프집합을 이용한 선박설계 지식기반 구축 (Knowledge Base Construction of Ship Design Using Fuzzy Equalization and Rough Sets)

  • 서규열
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.115-119
    • /
    • 2007
  • Inference rules of the knowledge base, generated by experts or optimization, may be often inconsistent and incomplete. This paper suggests a systematic and automatic method which extracts inference rules not from experts' subject but from data. First, input/output linguistic variables are partitioned into several properties by the fuzzy equalization algorithm and each combination of their properties comes to premise of inference rule. Then, the conclusion which is the mast suitable for the premise is selected by evaluating consistent measure. This method, automatically from data, derives inference rules from experience. It is shown through application that extracts new inference rules between hull dimensions and hull performance.

모바일 애드 혹 망을 위한 러프 집합을 사용한 교차 특징 분석 기반 비정상 행위 탐지 방법의 설계 및 평가 (Design and Evaluation of an Anomaly Detection Method based on Cross-Feature Analysis using Rough Sets for MANETs)

  • 배인한;이화주
    • 인터넷정보학회논문지
    • /
    • 제9권6호
    • /
    • pp.27-35
    • /
    • 2008
  • 무선 장치의 확산으로, 무선 애드 혹 망(MANETs, Mobile Ad-hoc NETworks)은 매우 흥미롭고 중요한 기술이 되고 있다. 그러나 MANET은 유선망 보다 더 견고하지 못하다. 유선망을 위하여 설계된 기존의 보안 메커니즘은 새로운 패러다임에서 재 설계되어야 한다. 본 논문에서, 우리는 MANET에서 비정상 행위 탐지 문제를 논의한다. 우리의 연구의 초점은 새로운 또는 알려지지 않은 공격을 탐지할 수 있는 비정상 행위 탐지 모델을 자동적으로 구축하는 기법에 있다. 제안하는 방법은 정상 트래픽에서 특징간 상관 관계 패턴을 포착하기 위하여 러프 집합에 기초한 교차 특징 분석을 수행한다. 제안하는 방법의 성능은 시뮬레이션을 통하여 평가되었다. 그 결과, 제안하는 방법의 성능이 특징 속성값의 확률에 기반 하는 교차 특징 분석을 사용하는 Huang의 방법 보다 성능이 우수함을 보였다. 따라서 제안하는 방법이 비정상 행위를 효율적으로 탐지한다는 것을 알 수 있었다.

  • PDF

러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용 (Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting)

  • 방영근;이철희
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.25-33
    • /
    • 2009
  • 최근 시계열 예측에 결론부에 선형식을 갖는 TS 퍼지 모델이 많이 이용되고 있는데, 이의 예측 성능은 정상성과 같은 데이터의 특성과 밀접한 관련이 있다. 그러므로 본 논문에서는 특히 비정상 시계열 예측에 매우 효과적인 새로운 예측 기법을 제안하였다. 시계열의 패턴이나 규칙성을 잘 끌어내기 위한 데이터 전처리 과정을 도입하고 다중 모델 TS 퍼지 예측기를 구성한 뒤, 러프집합을 이용한 적응 모델 선택 기법에 의해 입력 데이터의 특성에 따라 가변적으로 적합한 예측 모델을 선택하여 시계열 예측이 수행되도록 하였다. 마지막으로 예측 오차를 감소시키기 위하여 오차 보정 메커니즘을 추가함으로써 예측 성능을 더욱 향상시켰다. 시뮬레이션을 통해 제안된 기법의 성능을 검증하였다. 제안된 기법은 예측 모델 구현과 예측 수행 과정에서 시계열 데이터의 특성들을 잘 반영할 수 있으므로 불확실성과 비정상성을 갖는 시계열의 예측에 매우 효과적으로 이용될 수 있을 것이다.

통계적 정보기반 계층적 퍼지-러프 분류기법 (Statistical Information-Based Hierarchical Fuzzy-Rough Classification Approach)

  • 손창식;서석태;정환묵;권순학
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.792-798
    • /
    • 2007
  • 본 논문에서는 학습기법을 사용하지 않고 패턴분류의 성능을 최대화하면서 규칙의 수를 줄일 수 있는 통계적 정보기반 계층적 퍼지-러프 분류방법을 제안한다. 제안된 방법에서 통계적 정보는 계층적 퍼지-러프 분류 시스템에서 각 계층의 입력부 퍼지집합의 분할 구간을 추출하기 위해서 사용되었고, 러프집합은 통계적 정보로부터 추출된 분할 구간들과 연관된 퍼지 if-then 규칙의 수를 최소화하기 위해서 사용되었다. 제안된 방법의 효과성을 보이기 위해 Fisher의 IRIS 데이터를 사용한 기존 패턴분류 방법의 분류 정확도와 규칙들의 수를 비교하였다. 그 결과, 제안된 방법은 기존 방법들의 분류 성능과 유사함을 확인할 수 있었다.

유전알고리즘과 러프집합을 이용한 계층적 식별 규칙을 갖는 가스 식별 시스템의 설계 (Design of Gas Identification System with Hierarchically Identifiable Rule base using GAS and Rough Sets)

  • 조해파;방영근;이철희
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.37-43
    • /
    • 2011
  • In pattern analysis, dimensionality reduction and reasonable identification rule generation are very important parts. This paper performed effectively the dimensionality reduction by grouping the sensors of which the measured patterns are similar each other, where genetic algorithms were used for combination optimization. To identify the gas type, this paper constructed the hierarchically identifiable rule base with two frames by using rough set theory. The first frame is to accept measurement characteristics of each sensor and the other one is to reflect the identification patterns of each group. Thus, the proposed methods was able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, this paper demonstrated the effectiveness of the proposed methods by identifying five types of gases.

  • PDF

Cluster-based Information Retrieval with Tolerance Rough Set Model

  • Ho, Tu-Bao;Kawasaki, Saori;Nguyen, Ngoc-Binh
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.26-32
    • /
    • 2002
  • The objectives of this paper are twofold. First is to introduce a model for representing documents with semantics relatedness using rough sets but with tolerance relations instead of equivalence relations (TRSM). Second is to introduce two document hierarchical and nonhierarchical clustering algorithms based on this model and TRSM cluster-based information retrieval using these two algorithms. The experimental results show that TRSM offers an alterative approach to text clustering and information retrieval.

Efficient Extraction of Hierarchically Structured Rules Using Rough Sets

  • Lee, Chul-Heui;Seo, Seon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.205-210
    • /
    • 2004
  • This paper deals with rule extraction from data using rough set theory. We construct the rule base in a hierarchical granulation structure by applying core as a classification criteria at each level. When more than one core exist, the coverage is used for the selection of an appropriate one among them to increase the classification rate and accuracy. In Addition, a probabilistic approach is suggested so that the partially useful information included in inconsistent data can be contributed to knowledge reduction in order to decrease the effect of the uncertainty or vagueness of data. As a result, the proposed method yields more proper and efficient rule base in compatability and size. The simulation result shows that it gives a good performance in spite of very simple rules and short conditionals.