
ETRI Journal, Volume 36, Number 6, December 2014 © 2014 Doaa Shawky 1023
http://dx.doi.org/10.4218/etrij.14.0113.1133

Failure analysis is necessary to clarify the root cause of a
failure, predict the next time a failure may occur, and
improve the performance and reliability of a system.
However, it is not an easy task to analyze and interpret
failure data, especially for complex systems. Usually, these
data are represented using many attributes, and
sometimes they are inconsistent and ambiguous. In this
paper, we present a scalable approach for the analysis and
interpretation of failure data of high-performance
computing systems. The approach employs rough sets
theory (RST) for this task. The application of RST to a
large publicly available set of failure data highlights the
main attributes responsible for the root cause of a failure.
In addition, it is used to analyze other failure
characteristics, such as time between failures, repair times,
workload running on a failed node, and failure category.
Experimental results show the scalability of the presented
approach and its ability to reveal dependencies among
different failure characteristics.

Keywords: Failure analysis, high-performance
computing, rough sets theory.

Manuscript received Nov. 12, 2013; revised Apr. 19, 2014; accepted May 7, 2014.
Doaa Shawky (doaashawky@staff.cu.edu.eg) is with the Department of Engineering

Mathematics, Cairo University, Cairo, Egypt.

I. Introduction

Failure analysis is the process of analyzing failure data to
determine the root cause of a failure and predict new failures. It
is an important step in all engineering processes; one that aims
at improving system reliability and performance. The process
of effectively analyzing and understanding failure data is a non-
trivial one, especially for large complex systems where failures
are more likely to occur. Moreover, sometimes the collected
failure data are inconsistent and ambiguous making them even
more difficult to be interpreted. High-performance computing
(HPC) systems are notable examples of such systems. They are
usually used for running advanced application programs
efficiently and reliably. Thus, it is very important to analyze the
failures of such systems to minimize the probability of a failure
in the future. Los Alamos National Laboratory (LANL) has
released a large set of failure data of HPC systems [1]. The data
cover 23 HPC systems with a total of 23,740 records. Each
record contains the start time of the failure; its end time; the
system and node affected by the failure; the application type
that runs on the node; and the root cause of the failure. Many
approaches were proposed in the literature for the failure
analysis of HPC systems, especially after the release of
LANL’s large data set. However, the presented approaches in
the literature depend mainly on the statistical properties of the
measured attributes and employ statistical modeling techniques
to analyze the failure data. For example, in [2]–[3], the authors
studied the failure data that were released by LANL using
statistical modeling. The studied attributes include the root
cause of failures, the mean time between failures, and the mean
time to repair. The authors concluded that average failure rates
differed widely across systems. They were able to model the
time between failures by a Weibull distribution with decreasing

Scalable Approach to Failure Analysis of
 High-Performance Computing Systems

 Doaa Shawky

1024 Doaa Shawky ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0113.1133

hazard rate. In addition, they modeled the repair times by a log-
normal distribution. Moreover, in [4], error logs of 395 nodes
were studied. The authors analyzed the time between failures
using distribution fitting. They concluded that the time between
failures follows a Weibull distribution with increasing hazard
rates. In addition, they reported that higher failure rates were
more likely to occur during the day. Furthermore, Yawei and
others [5] suggested a strategy for spare-node allocation and
job scheduling in large-scale parallel systems (in addition to
failure prediction). They showed that their approach improves
a system’s productivity. In [6], the authors used decision tree
classifiers to predict failures in a HPC system. They also used
the data that were collected on supercomputing clusters at
LANL. They analyzed the root causes to predict if a failure,
would occur within an hour. The prediction precision of their
proposed system is 73%, with a recall of about 80%. They
employed the usage data, along with the failure data, to
improve the accuracy of prediction. Also, the same set of data
is studied in [7]. The authors performed statistical analysis to
determine the root cause of a failure, the time between failures
and the repair times. Moreover, they studied the effect of
failures on standard checkpoint/restart fault-tolerance strategies.
They concluded that the efficacy of peta-scale machines
running complex applications will fall off. Thus, they
recommended increasing the number of cycles that compress
checkpoints. Michalak and others studied the failure of the
Advanced Simulation and Computing Q supercomputer [8].
They found a high rate of node failures. This was hypothesized
to be caused primarily by soft errors (that is, board-level cache
and tag parity errors). Log errors were analyzed, and errors
were modeled using Poisson, gamma, and exponential
distributions. These models were used to predict the rate at
which fatal soft errors occur. Also, in [9], the authors studied
how the growing complexity and size of HPCs can lead to
frequent job failures. An empirical study on the job failures of
ten public workload data sets collected from eight large-scale
HPCs is presented. Their results show that job failure rates are
significant in most HPCs, and on average, a failed job often
consumes more computational resources than a successful job.
They also observed that the submission inter-arrival
time of failed jobs is better fit by generalized Pareto and log-
normal distributions. Moreover, in [10], the authors proposed
an analytical approach to quantifying the capabilities of the
Message Passing Interface and MapReduce programming
models to tolerate failures. The impact of different parameters
on fault tolerance has been studied to predict the scale at which
the MapReduce programming model has a better performance
under the presence of failures. A survey on the failure analysis
methods of HPC systems can be found in [11].

In addition to the previous approaches for failure prediction

and analysis, the literature includes other approaches that
measure the quality of failure prediction. For example, in [12],
the authors proposed a new metric for measuring the failure
prediction error. Instead of using the mean square error, precision,
or recall, they used a metric called “lost computing time.” Also,
in [13], the authors described context-relevant methodologies for
determining the accuracy and the cost-benefit of predictors.

In this paper, we present an approach that employs rough
sets theory (RST) [14] for modeling and analyzing the failure
data of HPC systems. RST has been used by many researchers
and in many interesting applications. It seems to be of
fundamental importance to artificial intelligence and cognitive
sciences, especially in the areas of machine learning,
knowledge acquisition, decision analysis, and knowledge
discovery from databases [15]. In addition, we previously used
RST for the analysis of dynamically collected data in the
context of software feature location [16]. RST-based
approaches have several advantages [17]. They do not need
any additional information about the analyzed data, in contrast
to similar approaches such as the fuzzy set theory. In addition,
they can find hidden patterns in the data in an efficient and
easy-to-understand way, and they are suitable for distributed
processing, which makes them scalable.

Using RST as an engine for failure data analysis, we can find
the minimum set of attributes responsible for a failure. The
approach is scalable because it removes any unnecessary
attributes and highlights only ones that are important. Thus, we
can analyze the failure data over the complete lifetime of a
system. Moreover, we can generate a set of rules that can be
used in the new predictions of time between failures, repair
times, and root causes of a failure.

The paper is organized as follows. Section II introduces
some RST concepts. Section III describes the used data. In
Section IV, we present the experimental results with respect to
the root cause, the time between failures, the time to repair, and
for some systems, the type of the application running on the
failed node. Finally, Section V draws conclusions and
limitations, as well as outlining ideas for future work.

II. RST Background

In this section, the basic concepts of RST are presented. A
detailed review on RST is found in [15]. The rough sets
philosophy is based on the assumption that with every object of
the universe, there is a certain amount of information expressed
by means of some attributes. Objects having the same
description are indiscernible with respect to the available
information. The indiscernibility relation constitutes a
mathematical basis of RST [16]. It induces a partition of the
universe into blocks of indiscernible objects, called elementary

ETRI Journal, Volume 36, Number 6, December 2014 Doaa Shawky 1025
http://dx.doi.org/10.4218/etrij.14.0113.1133

sets or decision classes. These sets can be used to build
knowledge about a real or abstract world. Any subset of the
universe, say x, may be expressed in terms of these blocks
either precisely or approximately. In the latter case, X may be
characterized by two ordinary sets, called lower and upper
approximations. A rough set is defined by means of these two
approximations. The lower approximation of X is composed of
all the elementary sets included in X while the upper
approximation of X consists of all the elementary sets that have
a non-empty intersection with X. The difference between the
upper and lower approximations constitutes the boundary
region of the rough set, whose elements cannot be
characterized with certainty as belonging to X, using the
available information [18]–[20]. Information about objects in
the boundary region is inconsistent or ambiguous. Using the
rough sets approach, one can deal with two major problems in
the analysis of an information system [18]–[20]: (a) reducing
unnecessary objects and attributes so as to get the minimum
subset of attributes (which ensures a good approximation of
classes and an acceptable quality of classification) and (b)
representing the information system in a decision table that
shows dependencies between the minimum subset of attributes
and particular attributes (called decisions) [20].

1. Information Systems

In RST, information systems are used to represent
knowledge. The notion of an information system that is
presented here is described in [20]–[21].

An information system (, , ,)q qS U V f= Ω consists of a
non-empty finite set, called the universe (U) and a non-empty
finite set of attributes (Ω), where Ω = C D∪ (in which C is a
finite set of condition attributes and D is a finite set of
decisions). For each q∈ Ω , there exists the domain of q (Vq)
and an information function fq, where fq: u → Vq. Objects can
be interpreted as cases, states, processes, or observations.
Attributes can be interpreted as features, variables, or
characteristic conditions. A special case of information systems
is called a decision table. In a decision table, the rows and
columns correspond to observations and attributes, respectively.

2. Lower and Upper Approximations

Due to imprecisions that exist in the real-world data, there
are always conflicting observations contained within a decision
table. In RST, approximations of sets are introduced to deal
with such inconsistencies. If (, , ,)q qS U V f= Ω is a decision
table, B⊆ Ω , and X⊆ U, then the B-lower (())B X and B-
upper (())B X approximations of X are defined, respectively,
as follows [22]:

() { /IND() : }B X Y U B Y X= ∈ ⊆∪ , (1)

() { /IND() : }B X Y U B Y X φ= ∈ ≠∪ ∩ , (2)

where U/IND(B) denotes the family of all equivalence classes
of B (classification of U). In addition, IND(B), which is called
the B-indiscernibility relation, is defined as follows:

IND(B) = 2{(,) , () ()}.x y U a x a y∈ = (3)

The set BNB(X) = () ()B X B X− is called the B-boundary
of X. The set of all elements of U that can be certainly classified
as elements of X employing the set of attributes B, is denoted
by ()B X . The set of elements of U that can be possibly
classified as elements of X using the set of attributes B, is
denoted by ()B X .

3. Quality of Approximations

A rough set can be also characterized numerically by the
following coefficient:

()

() .
()

B

B X
X

B X
α = (4)

This coefficient is called the accuracy of the approximation,
where |X| denotes the cardinality of X. Obviously,
0 () 1.B Xα≤ ≤ If ()B Xα = 1, then X is crisp with respect to
B; otherwise, if ()B Xα < 1, then X is rough with respect to B.
This provides a measure of how closely the rough set is
approximating the target set.

4. Dependency of Attributes

An important issue in data analysis is discovering
dependencies between attributes. Intuitively, a set of attributes
D depends totally on a set of attributes C, denoted by C ⇒
D, if all the values of the attributes from D are uniquely
determined by the values of the attributes from C. Let D and C
be subsets of A, then we say that D depends on C to a certain
degree, say k, such that 0 1.k≤ ≤ This is denoted by

 C⇒ Dk if k = γ(C, D) = |POSc(D) |/|U|, (5)

where
/

() (),C
X U D

POS D C X
∈

= ∪ called a positive region of

the partition U/D with respect to C, is the set of all elements of
U that can be uniquely classified into blocks of the partition
U/D by means of C.

In addition,

/

()
(,) .

X U D

C X
C D

U
γ

∈

= ∑ (6)

If k = 1, then we say that D depends totally on C; and if k < 1,
then we say that D depends partially (to the degree k) on C.

1026 Doaa Shawky ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0113.1133

The coefficient γ expresses the ratio of all elements of the
universe that can be properly classified into blocks of the
partition U/D employing attributes C. This coefficient
represents the accuracy of the classification and can be used for
characterizing a rough set.

5. Reducts and Core

An interesting question is whether there are attributes in the
information system that are more important to the knowledge
represented in the decision classes than other attributes. Usually,
we need to find a subset of attributes that can fully characterize
the knowledge in the decision table. Such an attribute set is
called a reduct. Formally, let S = (U, A) be an information
system, B⊆ A, and let b∈B. We say that b is dispensable in B
if IND(B) = IND(B–{b}); otherwise b is indispensable in B. A
set B is independent if all its attributes are indispensible. Any
subset B′ of B is called a reduct of B, if B′ is independent and
IND(B) = IND(B′). The core of B is the set of all indispensable
attributes of B. The following property connects the notion of
the core and reducts [18]–[20]:

 Core(B) = ∩ Red(B), (7)

where Red(B) is the set of all reducts of B.

6. Decision Rules

A unique feature of the RST method is its generation of rules
that play an important role in predicting the output. A decision
rule can be expressed as a logical statement:

IF conjunction of elementary conditions;
THEN disjunction of elementary decisions.

Several numerical factors can be associated with a
synthesized rule; for example, the rule support, accuracy, and
level of discrimination [19].

III. Failure Data

As previously mentioned, we used the large set of failure
data released by LANL. The data were collected over a period
of nine years (1996–2005), and they consist of 23 systems that
include a total of 5,006 nodes and 25,116 processors. The
systems vary in the number of nodes and processors. In
addition, the nodes within a system can differ in accordance
with the number of processors and the amount of main
memory. Most of these systems are large clusters of either
NUMA nodes or 2-way and 4-way SMP nodes. The majority
of the workloads are large-scale scientific simulations that
perform long periods of CPU computation, interrupted every
few hours by a few minutes of I/O for check-pointing.

Simulation workloads are often accompanied by scientific
visualization of large-scale data, which are also CPU-intensive
but exhibit more reading of data from storage than compute
workloads. Finally, some nodes are used purely as front-end
nodes, and others run more than one type of workload; for
instance, graphics nodes often run compute workloads. Thus,
the workloads can be classified into either graphics,
computation, or front-end workloads. In addition, some nodes
run more than one type of workload; for example, graphics and
computational workloads. An important characteristic of a
failure is its root cause. The root causes of a failure are
categorized as one of the following: human error, network
failure, environment, hardware error, software error, or
undetermined sometimes. More information on the data, the
collection methodology, and the environment can be found in
[1]–[2].

IV. Results and Discussion

In this section, we will present the results of the application
of RST on the failure data presented in the previous section.

The RST modeling and analysis were performed using
ROSE2 [23]. A discretization step is performed for the
continuous attributes; the time between failures and the down
times. Then, decision classes using defined decisions were
found. The quality of the approximations and the accuracy of
the classifications were also determined. Then, the core
attributes and the set of reducts for each experiment were
specified. Finally, we generated a set of rules that can represent
the given data. Using only the set of strong rules, we were able
to build classifiers that can be used for the prediction of new
failure characteristics. In the experimental study, we
investigated the basic characteristics of a failure; that is, the root
cause (failure type), the time between failures, the down
(repair) time, and the node number. Thus, we performed four
experiments for each system; each considers one of these
characteristics as the decision. Moreover, Systems 2 and 16
contain nodes that run different workloads. Therefore, for these
two systems, we added one more experiment that considers the
type of the workload as a decision. Table 1 presents the
abbreviations that are used in the results to address the different
failure characteristics. Also, it should be mentioned that the size
of the internal memory (MM) has large variations in System 18
only. Thus, only for this system, we performed an experiment
that considers MM as a decision. Moreover, the attribute NP
has constant values in each system, so it is meaningless to use it
as a decision. Although it appeared in some rules, as will be
shown later. Table 2 presents the coding that was used for the
failure categories. Meanwhile, Table 3 shows the coding that
was used for the workload types.

ETRI Journal, Volume 36, Number 6, December 2014 Doaa Shawky 1027
http://dx.doi.org/10.4218/etrij.14.0113.1133

Table 1. Symbols given to attributes.

Attribute name Symbol

Node number NN

Down time DT

Failure type FT

Time between failures TBF

Memory MM

of processors in a node PN

Workload type WT

Table 2. Coding for failure categories.

Failure type Code

Environment 1

Hardware 2

Human 3

Network 4

Undetermined 5

Software 6

Table 3. Coding for workload types.

Workload type Code

Unspecified 0

Graphics and front end 1

Compute 2

Graphics and compute 3

Graphics 4

Front end 5

1. Decision Classes

The decision classes, quality, and accuracy for Systems 2 and
16, are presented in Table 4. In addition, those results for the
remaining systems are presented in Table 5. It should be noted
that, on average, the quality and the accuracy values are
acceptable. The average quality is 0.86, 0.69, 0.97, and 0.86 for
the decisions TBF, DT, FT, and NN, respectively. Meanwhile,
the average accuracy is 0.76, 0.55, 0.94, and 0.73 for the
decisions TBF, DT, FT, and NN, respectively. These results can
be interpreted as follows. Firstly, the data are actually
inconsistent and contain ambiguity. Secondly, RST is an
effective candidate for analyzing these data. It should be noted
that the lowest obtained results were for System 19, which uses
TBF and DT as decisions. For nearly all systems, making TBF

Table 4. Decision classes for Systems 2 and 16, using WT as a
decision.

of decision classes Quality Accuracy

3 0.99 0.98

4 1.00 1.00

or DT as decisions yielded the lowest values. This is due to
their nature, as they are the only continuous attributes in the
data. Thus, their values have to be discretized first. Also, for
some systems (for example, 7, 15, 17, 22, and 24), using the
NN as a decision has no meaning as it has only a single value.

2. Core Attributes

The core attributes for the 23 systems, together with the
quality and the accuracy of the classifications using the four
failure characteristics, are presented in Table 6.

It should be mentioned that using the workload type as a
decision gives no core attributes for the 23 systems. Thus, we
report the core for the four other characteristics only. This
suggests that the data cannot be used for predicting the work
load type on a failed node with high accuracy. Also, the quality
of approximations using only the attributes in the core is
acceptable. It is, on average, 0.84, 0.69, 0.94, and 0.85 for the
decision attributes TBF, DT, FT, and NN, respectively. This
suggests a strong dependency of the failure characteristics on
these attributes; hence, they can be used effectively (with high
accuracy) in the prediction of future decision attributes.
Moreover, the lowest quality of approximations using only the
core is reported for System 19, which makes use of TBF and
DT as decisions. This is due to the low quality of the RST
representation of this system. Figure 1 presents how the
frequency of the core attributes for the four failure
characteristics vary across systems. As shown in Fig. 1, the
attributes with the highest frequencies are DT and TBF, which
suggests that these two attributes are the most important failure
characteristics. In addition, DT is the most frequent attribute in
the set of core attributes using TBF as a decision; and the
converse is true. This suggests a strong dependency between
these two attributes. Moreover, there is a strong dependency
between FT and the two decisions DT and TBF.

3. Reducts

For most systems, the reducts were the same as the core,
except for the systems presented in Table 7. Although the core
is different from the reducts, we note that the three main failure
characteristics (that is, DT, TBF, and FT) contribute to the

1028 Doaa Shawky ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0113.1133

Table 5. Decision classes.

System ID

Decision

TBF DT FT NN

of decision
classes

Quality Accuracy
of decision

classes
Quality Accuracy

of decision
classes

Quality Accuracy
of decision

classes
Quality Accuracy

2 193 0.96 0.92 180 0.26 0.54 5 0.94 0.92 49 0.84 0.77

3 42 0.98 0.97 150 0.90 0.76 6 0.99 0.98 115 0.92 0.86

4 38 0.99 0.98 162 0.86 0.75 6 1.00 1.00 108 0.91 0.84

5 43 0.99 0.98 169 0.83 0.67 6 1.00 1.00 109 0.93 0.87

6 20 0.96 0.93 51 0.84 0.65 6 1.00 1.00 27 1.00 1.00

7 80 0.69 0.52 84 0.62 0.23 7 0.98 0.96 1 - -

8 56 0.97 0.95 352 0.79 0.60 7 0.99 0.99 119 0.96 0.93

9 63 0.98 0.92 120 0.91 0.82 7 0.99 0.98 127 0.73 0.51

10 30 0.97 0.95 119 0.92 0.85 6 0.94 0.91 127 0.80 0.56

11 38 0.95 0.91 129 0.94 0.90 7 0.99 0.98 126 0.78 0.54

12 33 0.92 0.85 129 0.89 0.79 7 1.00 1.00 134 0.78 0.60

13 26 0.94 0.85 117 0.92 0.86 7 0.99 0.98 112 0.80 0.61

14 25 0.88 0.73 68 0.84 0.73 7 1.00 1.00 58 0.64 0.29

15 20 0.75 0.58 38 0.38 0.15 5 1.00 1.00 1 - -

16 167 0.60 0.30 414 0.38 0.08 7 0.92 0.85 16 0.84 0.58

17 9 1.00 1.00 18 0.44 0.13 7 0.80 0.66 1 - -

18 23 1.00 1.00 47 1.00 1.00 7 1.00 1.00 40 1.00 1.00

19 65 0.14 0.01 555 0.01 0.00 7 0.75 0.60 670 0.82 0.74

20 75 0.96 0.92 448 0.73 0.51 7 0.99 0.99 400 0.72 0.50

21 43 1.00 0.98 86 1.00 1.00 7 0.98 0.96 48 1.00 1.00

22 120 0.59 0.32 131 0.55 0.25 7 0.98 0.96 1 - -

23 73 0.65 0.37 194 0.28 0.05 7 0.92 0.83 5 0.96 0.93

24 71 0.73 0.47 107 0.49 0.24 7 1.00 1.00 1 - -

reducts.

4. Rules

Using the RST modeling tool, a large number of rules for
each system are generated. The following criteria were used for
the generation of such rules. The maximum rule length is set
equal to three, the minimum relative strength is varied between
50% and 80%, and the minimum discrimination level is set
equal to 100%. This results in three strong rules, on average,
for each system. For example, for System 2, some of the
generated rules (with the highest coverage) include the
following:

(NN = 7) & (DT = 42) ⇒ (TBF = 0.81)
(NN = 1) & (TBF = 0.59) ⇒ (DT = 239)
(DT = 30) ⇒ (FT = 6)

(FT = 6) ⇒ (NN = 21)

Due to the space limitations, the complete set of generated
rules is omitted. Also, for System 16, some rules using
workload type as a decision were generated. Examples of these
rules include:

(NN = 0) ⇒ (WT = 3)
(MM = 32) ⇒ (WT = 2)
However, these rules are of no importance to failure analysis.

Also for System 18, some rules that show the dependency
between some failure characteristics and the size of the
memory are generated. For example,

(FT = 6) & (TBF = 0.06) ⇒ (MM = 32)
(DT = 49) ⇒ (MM = 32).
In addition, for System 22, some rules revealed a

dependency between the number of processors in a node and
the time between failures, which suggests that the hardware

ETRI Journal, Volume 36, Number 6, December 2014 Doaa Shawky 1029
http://dx.doi.org/10.4218/etrij.14.0113.1133

Table 6. Core attributes and quality of classification.

System ID
TBF DT FT NN

Core Quality Core Quality Core Quality Core Quality

2 NN, DT, FT 0.67 NN, FT, TBF 0.26 NN, DT, TBF 0.65 TBF, DT, FT 0.76

3 NN, DT, FT 0.98 NN, FT, TBF 0.90 NN, DT, TBF 0.99 TBF, DT, FT 0.92

4 NN, DT, FT 0.93 NN, FT, TBF 0.86 NN, DT, TBF 1.00 TBF, DT, FT 0.91

5 NN, DT, FT 0.99 NN, FT, TBF 0.83 NN, DT, TBF 1.00 TBF, DT, FT 0.93

6 NN, DT 0.96 NN, FT, TBF 0.84 DT 0.96 DT, TBF 1.00

7 DT, FT 0.69 FT, TBF 0.62 DT, TBF 0.98 DT, TBF 1.00

8 NN, DT, FT 0.97 NN, FT, TBF 0.79 NN, DT, TBF 0.99 DT, FT, TBF 0.96

9 NN, DT, FT 0.92 NN, FT, TBF 0.91 NN, DT, TBF 0.99 TBF, DT, FT 0.73

10 NN, DT, FT 0.97 NN, FT, TBF 0.92 NN, DT, TBF 0.93 TBF, DT, FT 0.80

11 NN, DT, FT 0.95 NN, FT, TBF 0.94 NN, DT, TBF 0.99 TBF, DT, FT 0.78

12 NN, DT, FT 0.92 NN, FT, TBF 0.89 NN, DT, TBF 1.00 TBF, DT, FT 0.78

13 NN, DT, FT 0.94 NN, FT, TBF 0.92 NN, DT, TBF 0.99 TBF, DT, FT 0.80

14 NN, DT, FT 0.88 NN, FT, TBF 0.84 NN, DT, TBF 1.00 DT, TBF 0.64

15 DT, FT 0.75 FT, TBF 0.38 DT, TBF 1.00 TBF, DT, FT 0.63

16 NN, DT, FT 0.60 NN, FT, TBF 0.38 NN, DT, TBF 0.92 TBF, DT, FT 0.79

17 DT, FT 1.00 FT, TBF 0.44 DT, TBF 0.80 TBF, DT, FT 0.74

18 NN, DT 1.00 NN, TBF 1.00 None - DT, TBF 1.00

19 DT, FT 0.14 FT, TBF 0.01 DT, TBF 0.75 DT, TBF 0.77

20 NN, DT, FT 0.96 NN, FT, TBF 0.73 NN, DT, TBF 0.99 TBF, DT, FT 0.72

21 NN, DT 0.98 NN, FT, TBF 1.00 DT 0.79 DT, TBF 1.00

22 DT, FT 0.59 FT, TBF 0.55 DT, TBF 0.98 TBF, DT, FT 0.93

23 NN, DT, FT 0.65 NN, FT, TBF 0.28 DT, TBF 0.88 MM, DT, TBF 0.96

24 DT, FT 0.73 FT, TBF 0.49 DT, TBF 1.00 None -

Fig. 1. Frequency of attributes in the core using each of the four
basic characteristics as decisions.

TBF DT FT NN MM None

Failure characteristics

25

20

15

10

5

0

F
re

qu
en

cy

TBF

DT

FT

NN

specifications have an influence on the failure of some systems.
Moreover, using FT as a decision, we had to relax the criteria
for the generation of rules to have 30% relative strength and
80% discrimination level for Systems 15, 17, and 18. This
indicates less correlation between FT and the other attributes in

Table 7. Systems with reducts that are different from the core.

System ID Decision Reducts

16 NN {MM, DT, FT, TBF}, {WT, DT, FT, TBF}

16 WT {NN}, {MM}

6 FT {NN, DT}, {DT, TBF}

18 MM {NN}, {DT, TBF}

23 FT {NN, DT, TBF}, {MM, DT, TBF}

these systems. For some systems (for example, 10), even when
we relaxed the rule-generation criteria, no decent rules could be
generated. The rules with the highest coverage were obtained
for System 8 using FT as decision (about 88%). On the other
hand, the rules with the lowest coverage were obtained for
System 2 using TBF as a decision. On average, the obtained
rules have a coverage of about 70%.

1030 Doaa Shawky ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0113.1133

5. Failure Prediction

We used the set of rules that were generated in the previous
section in building a predictor of failures. The prediction is
based on classification techniques. The RST tool employs the
L-metrics classifier [21]. As for any classification technique,
the set of data for each system is divided into two sets: the first
is used for learning (70% of the data), while the second is for
testing. However, the obtained accuracy highly depends on the
system, the type of the validation test (leaving-one-out or k-fold
cross validation), and the decision attribute. The highest
obtained accuracy was 83.6% for System 6, using k-fold cross
validation with k = 10 and the failure type as a decision
attribute. On the other hand, the lowest classification accuracy
was 54% for System 16, using TBF as a decision with 10-fold
cross validation. Other experiments yielded accuracies that
varied between 56% and 77%.

V. Conclusion and Future Work

Failure analysis of HPC systems is necessary to improve
system reliability. Thus, we need an intelligent, scalable, and
efficient method for this task. In this paper, we proposed an
RST-based approach for the failure analysis of the first ever
release of large-size failure data of HPC systems. Using the
capabilities of RST as a powerful analysis tool, the minimum
sets of factors related to each failure characteristic can be found.
In addition, the complete set of data for each system can be
analyzed without facing scalability problems. Obtained results
show strong dependency between the time between failures
and the down times. Also, in contrast to some previous works
(for example, [4]), results show a very weak dependency
between the time between failures and the workload type
running on a failed node. In addition, new relationships were
revealed among the attributes of the failure data. For example,
the results show that, for some systems, there is a dependency
between the hardware specification of a node (the size of the
internal memory) and the failure type.

It should be mentioned that the sets of rules that were
generated for each system could not be used for generalization
since the support (coverage) of most rules was relatively low.
However, they can be used for revealing some sort of
dependencies between the attributes of a failure and its
characteristics.

Additional work is needed to extract the optimal set of rules
describing each system and to utilize these rules in the building
of a predictor of failures with high accuracy. Another important
point, in need of extra investigation, is the effect of the
discretization of the time between failures and the down time
on the quality of the obtained rules. We think that if these

attributes are properly discretized, the accuracy of the predictor
can be highly improved.

References

[1] The Raw Failure Data. Los Alamos National Laboratory.

Accessed May 14, 2012. http://www.lanl.gov/projects/

computersciencedata/, 2012.

[2] B. Schroeder and G.A. Gibson, “A Large-Scale Study of Failures

in High-Performance Computing Systems,” IEEE Trans.

Dependable Secure Comput., vol. 7, no. 4, Oct.–Dec. 2010, pp.

337–350.

[3] B. Schroeder and G.A. Gibson, “A Large-Scale Study of Failures

in High-Performance-Computing Systems,” Proc. Dependable

Syst. Netw., Pennsylvania, PA, USA, June 25–28, 2006, pp. 249–

258.

[4] R.K. Sahoo et al., “Failure Data Analysis of a Large-Scale

Heterogeneous Server Environment,” Proc. Dependable Syst.

Netw., Florence, Italy, June 28– July 1, 2004, pp. 772–781.

[5] L. Yawei et al., “Fault-Aware Runtime Strategies for High-

Performance Computing,” IEEE Trans. Parallel Distrib. Syst., vol.

20, no. 4, Apr. 2009, pp. 460–473.

[6] N. Nakka, A. Agrawal, and A. Choudhary, “Predicting Node

Failure in High Performance Computing Systems from Failure

and Usage Logs,” IEEE Int. Symp. Parallel Distrib. Process.

Workshops Phd Forum, Shanghai, China, May 16–20, 2011, pp.

1557–1566.

[7] G. Gibson, B. Schroeder, and J. Digney, “Failure Tolerance in

Petascale Computers,” CTWatch Quarterly, vol. 3, no. 4, Nov.

2007, pp. 4–10.

[8] S.E. Michalak et al., “Predicting the Number of Fatal Soft Errors

in Los Alamos National Laboratory’s ASC Q

Supercomputer,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,

Sept. 2005, pp. 329–335.

[9] Y. Yuan et al., “Job Failures in High Performance Computing

Systems: A Large-Scale Empirical Study,” Comput. Math. Appl.,

vol. 63, no. 2, Jan. 2012, pp. 365–377.

[10] H. Jin and X.-H. Sun, “Performance Comparison under Failures

of MPI and MapReduce: An Analytical Approach,” Future

Generation Comput. Syst., vol. 29, no. 7, Sept. 2013, pp. 1808–

1815.

[11] M. Sharifi and S.A. Hamedi, “Failure Prediction Mechanisms in

Cluster Systems,” Int. Conf. Biocomput., Bioinformat. Biomed.

Technol., Bucharest, Romania, June 29–July 5, 2008, pp. 23–28.

[12] N. Taerat et al., “Proficiency Metrics for Failure Prediction in High

Performance Computing,” Int. Symp. Parallel Distrib. Process.

Appl., Taipei, Taiwan, Sept. 6–9, 2010, pp. 491–498.

[13] J. Brandt et al., “Quantifying Effectiveness of Failure Prediction

and Response in HPC Systems: Methodology and Example,” Int.

Conf. Dependable Syst. Netw. Workshops, Chicago, IL, USA,

ETRI Journal, Volume 36, Number 6, December 2014 Doaa Shawky 1031
http://dx.doi.org/10.4218/etrij.14.0113.1133

June 28–July 1, 2010, pp. 2–7.

[14] Z. Pawlak, “Rough Sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5,

Oct. 1982, pp. 341–356.

[15] G. Alfredo et al., “A New Proposal for Multi-objective

Optimization Using Differential Evolution and Rough Sets

Theory,” Genetic Evol. Comput. Conf., Seattle, WA, USA, July 8–

12, 2006, pp. 675–682.

[16] D. Shawky, “ The Application of Rough Sets Theory as a Tool

for Analyzing Dynamically Collected Data,” J. Eng. Appl. Sci.,

Cairo University, vol. 55, no. 6, Nov. 2008, pp. 473–490.

[17] B. Suraj, “Rough Set Methods for the Synthesis and Analysis of

Concurrent Processes,” in Studies Fuzziness Soft Comput.,

Heidelberg, Germany: Springer, 2000, pp. 379–488.

[18] J. Komorowski et al., “Rough Sets: A Tutorial,” in Rough Fuzzy

Hybridization: A New Trend in Decision Making, Singapore:

Springer, 1999, pp. 3–98.

[19] J. Liang, Z. Shi, and D. Li, “Applications of Inclusion Degree in

Rough Set Theory,” Int. J. Comput. Cognition, vol. 1, no. 2, June

2003, pp. 67–78.

[20] Z. Pawlak, “Rough Sets” in Rough Sets Data Mining, Dordrecht,

Netherlands: Kluwer Academic Publisher, 1997, pp. 3–7.

[21] J. Hampton, “Rough Set Theory: The Basics (Part 1),” J. Comput.

Intell. Finance, vol. 5, no. 6, Jan.–Feb. 1997, pp. 25–29.

[22] X. Hu, T. Lin, and J. Han, “A New Rough Sets Model Based on

Database Systems,” Fundam. Informat., vol. 59, no. 2–3, Apr.

2004, pp. 125–152.

[23] ROSE2, Rough Sets Data Explorer. Laboratory of Intelligent

Decision Support Systems. Poznan University of Technology,

Poland. Accessed Jan. 22, 2012. http://idss.cs.put.poznan.pl/site/

Doaa Shawky received her BS degree in

electronics and communications engineering in

1996, her MS degree in computer engineering

in 2000, and her PhD degree in engineering

mathematics in 2005. All degrees were received

from Cairo University, Faculty of Engineering

(CUFE), Giza, Egypt. She has been working for

CUFE since 1998. She has been working as an associate professor with

the Engineering Mathematics Department at CUFE since 2012. She is

a member of the IEEE computer society. Her main research interests

include data analysis, software engineering, cloud computing, and

evolutionary computation techniques.

