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Failure analysis is necessary to clarify the root cause of a 
failure, predict the next time a failure may occur, and 
improve the performance and reliability of a system. 
However, it is not an easy task to analyze and interpret 
failure data, especially for complex systems. Usually, these 
data are represented using many attributes, and 
sometimes they are inconsistent and ambiguous. In this 
paper, we present a scalable approach for the analysis and 
interpretation of failure data of high-performance 
computing systems. The approach employs rough sets 
theory (RST) for this task. The application of RST to a 
large publicly available set of failure data highlights the 
main attributes responsible for the root cause of a failure. 
In addition, it is used to analyze other failure 
characteristics, such as time between failures, repair times, 
workload running on a failed node, and failure category. 
Experimental results show the scalability of the presented 
approach and its ability to reveal dependencies among 
different failure characteristics. 
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I. Introduction 

Failure analysis is the process of analyzing failure data to 
determine the root cause of a failure and predict new failures. It 
is an important step in all engineering processes; one that aims 
at improving system reliability and performance. The process 
of effectively analyzing and understanding failure data is a non-
trivial one, especially for large complex systems where failures 
are more likely to occur. Moreover, sometimes the collected 
failure data are inconsistent and ambiguous making them even 
more difficult to be interpreted. High-performance computing 
(HPC) systems are notable examples of such systems. They are 
usually used for running advanced application programs 
efficiently and reliably. Thus, it is very important to analyze the 
failures of such systems to minimize the probability of a failure 
in the future. Los Alamos National Laboratory (LANL) has 
released a large set of failure data of HPC systems [1]. The data 
cover 23 HPC systems with a total of 23,740 records. Each 
record contains the start time of the failure; its end time; the 
system and node affected by the failure; the application type 
that runs on the node; and the root cause of the failure. Many 
approaches were proposed in the literature for the failure 
analysis of HPC systems, especially after the release of 
LANL’s large data set. However, the presented approaches in 
the literature depend mainly on the statistical properties of the 
measured attributes and employ statistical modeling techniques 
to analyze the failure data. For example, in [2]–[3], the authors 
studied the failure data that were released by LANL using 
statistical modeling. The studied attributes include the root 
cause of failures, the mean time between failures, and the mean 
time to repair. The authors concluded that average failure rates 
differed widely across systems. They were able to model the 
time between failures by a Weibull distribution with decreasing 
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hazard rate. In addition, they modeled the repair times by a log-
normal distribution. Moreover, in [4], error logs of 395 nodes 
were studied. The authors analyzed the time between failures 
using distribution fitting. They concluded that the time between 
failures follows a Weibull distribution with increasing hazard 
rates. In addition, they reported that higher failure rates were 
more likely to occur during the day. Furthermore, Yawei and 
others [5] suggested a strategy for spare-node allocation and 
job scheduling in large-scale parallel systems (in addition to 
failure prediction). They showed that their approach improves 
a system’s productivity. In [6], the authors used decision tree 
classifiers to predict failures in a HPC system. They also used 
the data that were collected on supercomputing clusters at 
LANL. They analyzed the root causes to predict if a failure, 
would occur within an hour. The prediction precision of their 
proposed system is 73%, with a recall of about 80%. They 
employed the usage data, along with the failure data, to 
improve the accuracy of prediction. Also, the same set of data 
is studied in [7]. The authors performed statistical analysis to 
determine the root cause of a failure, the time between failures 
and the repair times. Moreover, they studied the effect of 
failures on standard checkpoint/restart fault-tolerance strategies. 
They concluded that the efficacy of peta-scale machines 
running complex applications will fall off. Thus, they 
recommended increasing the number of cycles that compress 
checkpoints. Michalak and others studied the failure of the 
Advanced Simulation and Computing Q supercomputer [8]. 
They found a high rate of node failures. This was hypothesized 
to be caused primarily by soft errors (that is, board-level cache 
and tag parity errors). Log errors were analyzed, and errors 
were modeled using Poisson, gamma, and exponential 
distributions. These models were used to predict the rate at 
which fatal soft errors occur. Also, in [9], the authors studied 
how the growing complexity and size of HPCs can lead to 
frequent job failures. An empirical study on the job failures of 
ten public workload data sets collected from eight large-scale 
HPCs is presented. Their results show that job failure rates are 
significant in most HPCs, and on average, a failed job often 
consumes more computational resources than a successful job. 
They also observed that the submission inter-arrival 
time of failed jobs is better fit by generalized Pareto and log-
normal distributions. Moreover, in [10], the authors proposed 
an analytical approach to quantifying the capabilities of the 
Message Passing Interface and MapReduce programming 
models to tolerate failures. The impact of different parameters 
on fault tolerance has been studied to predict the scale at which 
the MapReduce programming model has a better performance 
under the presence of failures. A survey on the failure analysis 
methods of HPC systems can be found in [11]. 

In addition to the previous approaches for failure prediction 

and analysis, the literature includes other approaches that 
measure the quality of failure prediction. For example, in [12], 
the authors proposed a new metric for measuring the failure 
prediction error. Instead of using the mean square error, precision, 
or recall, they used a metric called “lost computing time.” Also, 
in [13], the authors described context-relevant methodologies for 
determining the accuracy and the cost-benefit of predictors.    

In this paper, we present an approach that employs rough 
sets theory (RST) [14] for modeling and analyzing the failure 
data of HPC systems. RST has been used by many researchers 
and in many interesting applications. It seems to be of 
fundamental importance to artificial intelligence and cognitive 
sciences, especially in the areas of machine learning, 
knowledge acquisition, decision analysis, and knowledge 
discovery from databases [15]. In addition, we previously used 
RST for the analysis of dynamically collected data in the 
context of software feature location [16]. RST-based 
approaches have several advantages [17]. They do not need 
any additional information about the analyzed data, in contrast 
to similar approaches such as the fuzzy set theory. In addition, 
they can find hidden patterns in the data in an efficient and 
easy-to-understand way, and they are suitable for distributed 
processing, which makes them scalable. 

Using RST as an engine for failure data analysis, we can find 
the minimum set of attributes responsible for a failure. The 
approach is scalable because it removes any unnecessary 
attributes and highlights only ones that are important. Thus, we 
can analyze the failure data over the complete lifetime of a 
system. Moreover, we can generate a set of rules that can be 
used in the new predictions of time between failures, repair 
times, and root causes of a failure. 

The paper is organized as follows. Section II introduces 
some RST concepts. Section III describes the used data. In 
Section IV, we present the experimental results with respect to 
the root cause, the time between failures, the time to repair, and 
for some systems, the type of the application running on the 
failed node. Finally, Section V draws conclusions and 
limitations, as well as outlining ideas for future work. 

II. RST Background 

In this section, the basic concepts of RST are presented. A 
detailed review on RST is found in [15]. The rough sets 
philosophy is based on the assumption that with every object of 
the universe, there is a certain amount of information expressed 
by means of some attributes. Objects having the same 
description are indiscernible with respect to the available 
information. The indiscernibility relation constitutes a 
mathematical basis of RST [16]. It induces a partition of the 
universe into blocks of indiscernible objects, called elementary 
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sets or decision classes. These sets can be used to build 
knowledge about a real or abstract world. Any subset of the 
universe, say x, may be expressed in terms of these blocks 
either precisely or approximately. In the latter case, X may be 
characterized by two ordinary sets, called lower and upper 
approximations. A rough set is defined by means of these two 
approximations. The lower approximation of X is composed of 
all the elementary sets included in X while the upper 
approximation of X consists of all the elementary sets that have 
a non-empty intersection with X. The difference between the 
upper and lower approximations constitutes the boundary 
region of the rough set, whose elements cannot be 
characterized with certainty as belonging to X, using the 
available information [18]–[20]. Information about objects in 
the boundary region is inconsistent or ambiguous. Using the 
rough sets approach, one can deal with two major problems in 
the analysis of an information system [18]–[20]: (a) reducing 
unnecessary objects and attributes so as to get the minimum 
subset of attributes (which ensures a good approximation of 
classes and an acceptable quality of classification) and (b) 
representing the information system in a decision table that 
shows dependencies between the minimum subset of attributes 
and particular attributes (called decisions) [20]. 

1. Information Systems 

In RST, information systems are used to represent 
knowledge. The notion of an information system that is 
presented here is described in [20]–[21]. 

An information system ( , , , )q qS U V f= Ω  consists of a 
non-empty finite set, called the universe (U) and a non-empty 
finite set of attributes (Ω), where Ω = C D∪  (in which C is a 
finite set of condition attributes and D is a finite set of 
decisions). For each q∈ Ω , there exists the domain of q (Vq) 
and an information function fq, where fq: u → Vq. Objects can 
be interpreted as cases, states, processes, or observations. 
Attributes can be interpreted as features, variables, or 
characteristic conditions. A special case of information systems 
is called a decision table. In a decision table, the rows and 
columns correspond to observations and attributes, respectively. 

2. Lower and Upper Approximations 

Due to imprecisions that exist in the real-world data, there 
are always conflicting observations contained within a decision 
table. In RST, approximations of sets are introduced to deal 
with such inconsistencies. If ( , , , )q qS U V f= Ω  is a decision 
table, B⊆ Ω , and X⊆ U, then the B-lower ( ( ))B X  and B-
upper ( ( ))B X  approximations of X are defined, respectively, 
as follows [22]: 

( ) { /IND( ) : }B X Y U B Y X= ∈ ⊆∪ ,         (1) 

( ) { /IND( ) : }B X Y U B Y X φ= ∈ ≠∪ ∩ ,      (2)            

where U/IND(B) denotes the family of all equivalence classes 
of B (classification of U). In addition, IND(B), which is called 
the B-indiscernibility relation, is defined as follows: 

IND(B) = 2{( , ) , ( ) ( )}.x y U a x a y∈ =         (3) 

The set BNB(X) = ( ) ( )B X B X−  is called the B-boundary 
of X. The set of all elements of U that can be certainly classified 
as elements of X employing the set of attributes B, is denoted 
by ( )B X . The set of elements of U that can be possibly 
classified as elements of X using the set of attributes B, is 
denoted by ( )B X . 

3. Quality of Approximations 

A rough set can be also characterized numerically by the 
following coefficient: 

     
( )

( ) .
( )

B

B X
X

B X
α =                 (4) 

This coefficient is called the accuracy of the approximation, 
where |X| denotes the cardinality of X. Obviously, 
0 ( ) 1.B Xα≤ ≤  If ( )B Xα = 1, then X is crisp with respect to 
B; otherwise, if ( )B Xα < 1, then X is rough with respect to B. 
This provides a measure of how closely the rough set is 
approximating the target set. 

4. Dependency of Attributes 

An important issue in data analysis is discovering 
dependencies between attributes. Intuitively, a set of attributes 
D depends totally on a set of attributes C, denoted by C ⇒  
D, if all the values of the attributes from D are uniquely 
determined by the values of the attributes from C. Let D and C 
be subsets of A, then we say that D depends on C to a certain 
degree, say k, such that 0 1.k≤ ≤  This is denoted by 

 C⇒ Dk  if  k = γ(C, D) = |POSc(D) |/|U|,       (5)   

where 
/

( ) ( ),C
X U D

POS D C X
∈

= ∪  called a positive region of 

the partition U/D with respect to C, is the set of all elements of 
U that can be uniquely classified into blocks of the partition 
U/D by means of C. 

In addition, 

 
/

( )
( , ) .
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= ∑                (6) 

If k = 1, then we say that D depends totally on C; and if k < 1, 
then we say that D depends partially (to the degree k) on C. 
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The coefficient γ  expresses the ratio of all elements of the 
universe that can be properly classified into blocks of the 
partition U/D employing attributes C. This coefficient 
represents the accuracy of the classification and can be used for 
characterizing a rough set. 

5. Reducts and Core 

An interesting question is whether there are attributes in the 
information system that are more important to the knowledge 
represented in the decision classes than other attributes. Usually, 
we need to find a subset of attributes that can fully characterize 
the knowledge in the decision table. Such an attribute set is 
called a reduct. Formally, let S = (U, A) be an information 
system, B⊆ A, and let b∈B. We say that b is dispensable in B 
if IND(B) = IND(B–{b}); otherwise b is indispensable in B. A 
set B is independent if all its attributes are indispensible. Any 
subset B′ of B is called a reduct of B, if B′ is independent and 
IND(B) = IND(B′). The core of B is the set of all indispensable 
attributes of B. The following property connects the notion of 
the core and reducts [18]–[20]: 

       Core(B) = ∩ Red(B),                  (7) 

where Red(B) is the set of all reducts of B. 

6. Decision Rules 

A unique feature of the RST method is its generation of rules 
that play an important role in predicting the output. A decision 
rule can be expressed as a logical statement: 

IF conjunction of elementary conditions; 
THEN disjunction of elementary decisions. 

Several numerical factors can be associated with a 
synthesized rule; for example, the rule support, accuracy, and 
level of discrimination [19]. 

III. Failure Data 

As previously mentioned, we used the large set of failure 
data released by LANL. The data were collected over a period 
of nine years (1996–2005), and they consist of 23 systems that 
include a total of 5,006 nodes and 25,116 processors. The 
systems vary in the number of nodes and processors. In 
addition, the nodes within a system can differ in accordance 
with the number of processors and the amount of main 
memory. Most of these systems are large clusters of either 
NUMA nodes or 2-way and 4-way SMP nodes. The majority 
of the workloads are large-scale scientific simulations that 
perform long periods of CPU computation, interrupted every 
few hours by a few minutes of I/O for check-pointing. 

Simulation workloads are often accompanied by scientific 
visualization of large-scale data, which are also CPU-intensive 
but exhibit more reading of data from storage than compute 
workloads. Finally, some nodes are used purely as front-end 
nodes, and others run more than one type of workload; for 
instance, graphics nodes often run compute workloads. Thus, 
the workloads can be classified into either graphics, 
computation, or front-end workloads. In addition, some nodes 
run more than one type of workload; for example, graphics and 
computational workloads. An important characteristic of a 
failure is its root cause. The root causes of a failure are 
categorized as one of the following: human error, network 
failure, environment, hardware error, software error, or 
undetermined sometimes. More information on the data, the 
collection methodology, and the environment can be found in 
[1]–[2]. 

IV. Results and Discussion 

In this section, we will present the results of the application 
of RST on the failure data presented in the previous section. 

The RST modeling and analysis were performed using 
ROSE2 [23]. A discretization step is performed for the 
continuous attributes; the time between failures and the down 
times. Then, decision classes using defined decisions were 
found. The quality of the approximations and the accuracy of 
the classifications were also determined. Then, the core 
attributes and the set of reducts for each experiment were 
specified. Finally, we generated a set of rules that can represent 
the given data. Using only the set of strong rules, we were able 
to build classifiers that can be used for the prediction of new 
failure characteristics. In the experimental study, we 
investigated the basic characteristics of a failure; that is, the root 
cause (failure type), the time between failures, the down 
(repair) time, and the node number. Thus, we performed four 
experiments for each system; each considers one of these 
characteristics as the decision. Moreover, Systems 2 and 16 
contain nodes that run different workloads. Therefore, for these 
two systems, we added one more experiment that considers the 
type of the workload as a decision. Table 1 presents the 
abbreviations that are used in the results to address the different 
failure characteristics. Also, it should be mentioned that the size 
of the internal memory (MM) has large variations in System 18 
only. Thus, only for this system, we performed an experiment 
that considers MM as a decision. Moreover, the attribute NP 
has constant values in each system, so it is meaningless to use it 
as a decision. Although it appeared in some rules, as will be 
shown later. Table 2 presents the coding that was used for the 
failure categories. Meanwhile, Table 3 shows the coding that 
was used for the workload types. 
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Table 1. Symbols given to attributes. 

Attribute name Symbol 

Node number NN 

Down time DT 

Failure type FT 

Time between failures TBF 

Memory MM 

# of processors in a node PN 

Workload type WT 

 

Table 2. Coding for failure categories. 

Failure type Code 

Environment 1 

Hardware 2 

Human 3 

Network 4 

Undetermined 5 

Software 6 

 

Table 3. Coding for workload types. 

Workload type Code 

Unspecified 0 

Graphics and front end 1 

Compute 2 

Graphics and compute 3 

Graphics 4 

Front end 5 

 

 

1. Decision Classes 

The decision classes, quality, and accuracy for Systems 2 and 
16, are presented in Table 4. In addition, those results for the 
remaining systems are presented in Table 5. It should be noted 
that, on average, the quality and the accuracy values are 
acceptable. The average quality is 0.86, 0.69, 0.97, and 0.86 for 
the decisions TBF, DT, FT, and NN, respectively. Meanwhile, 
the average accuracy is 0.76, 0.55, 0.94, and 0.73 for the 
decisions TBF, DT, FT, and NN, respectively. These results can 
be interpreted as follows. Firstly, the data are actually 
inconsistent and contain ambiguity. Secondly, RST is an 
effective candidate for analyzing these data. It should be noted 
that the lowest obtained results were for System 19, which uses 
TBF and DT as decisions. For nearly all systems, making TBF  

Table 4. Decision classes for Systems 2 and 16, using WT as a 
decision. 

# of decision classes Quality Accuracy 

3 0.99 0.98 

4 1.00 1.00 

 

 
or DT as decisions yielded the lowest values. This is due to 
their nature, as they are the only continuous attributes in the 
data. Thus, their values have to be discretized first. Also, for 
some systems (for example, 7, 15, 17, 22, and 24), using the 
NN as a decision has no meaning as it has only a single value. 

2. Core Attributes 

The core attributes for the 23 systems, together with the 
quality and the accuracy of the classifications using the four 
failure characteristics, are presented in Table 6.  

It should be mentioned that using the workload type as a 
decision gives no core attributes for the 23 systems. Thus, we 
report the core for the four other characteristics only. This 
suggests that the data cannot be used for predicting the work 
load type on a failed node with high accuracy. Also, the quality 
of approximations using only the attributes in the core is 
acceptable. It is, on average, 0.84, 0.69, 0.94, and 0.85 for the 
decision attributes TBF, DT, FT, and NN, respectively. This 
suggests a strong dependency of the failure characteristics on 
these attributes; hence, they can be used effectively (with high 
accuracy) in the prediction of future decision attributes. 
Moreover, the lowest quality of approximations using only the 
core is reported for System 19, which makes use of TBF and 
DT as decisions. This is due to the low quality of the RST 
representation of this system. Figure 1 presents how   the 
frequency of the core attributes for the four failure 
characteristics vary across systems. As shown in Fig. 1, the 
attributes with the highest frequencies are DT and TBF, which 
suggests that these two attributes are the most important failure 
characteristics. In addition, DT is the most frequent attribute in 
the set of core attributes using TBF as a decision; and the 
converse is true. This suggests a strong dependency between 
these two attributes. Moreover, there is a strong dependency 
between FT and the two decisions DT and TBF.  

3. Reducts 

For most systems, the reducts were the same as the core, 
except for the systems presented in Table 7. Although the core 
is different from the reducts, we note that the three main failure 
characteristics (that is, DT, TBF, and FT) contribute to the 
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Table 5. Decision classes. 

System ID 

Decision 

TBF DT FT NN 

# of decision 
classes 

Quality Accuracy 
# of decision 

classes 
Quality Accuracy

# of decision 
classes 

Quality Accuracy 
# of decision 

classes 
Quality Accuracy

2 193 0.96 0.92 180 0.26 0.54 5 0.94 0.92 49 0.84 0.77 

3 42 0.98 0.97 150 0.90 0.76 6 0.99 0.98 115 0.92 0.86 

4 38 0.99 0.98 162 0.86 0.75 6 1.00 1.00 108 0.91 0.84 

5 43 0.99 0.98 169 0.83 0.67 6 1.00 1.00 109 0.93 0.87 

6 20 0.96 0.93 51 0.84 0.65 6 1.00 1.00 27 1.00 1.00 

7 80 0.69 0.52 84 0.62 0.23 7 0.98 0.96 1 - - 

8 56 0.97 0.95 352 0.79 0.60 7 0.99 0.99 119 0.96 0.93 

9 63 0.98 0.92 120 0.91 0.82 7 0.99 0.98 127 0.73 0.51 

10 30 0.97 0.95 119 0.92 0.85 6 0.94 0.91 127 0.80 0.56 

11 38 0.95 0.91 129 0.94 0.90 7 0.99 0.98 126 0.78 0.54 

12 33 0.92 0.85 129 0.89 0.79 7 1.00 1.00 134 0.78 0.60 

13 26 0.94 0.85 117 0.92 0.86 7 0.99 0.98 112 0.80 0.61 

14 25 0.88 0.73 68 0.84 0.73 7 1.00 1.00 58 0.64 0.29 

15 20 0.75 0.58 38 0.38 0.15 5 1.00 1.00 1 - - 

16 167 0.60 0.30 414 0.38 0.08 7 0.92 0.85 16 0.84 0.58 

17 9 1.00 1.00 18 0.44 0.13 7 0.80 0.66 1 - - 

18 23 1.00 1.00 47 1.00 1.00 7 1.00 1.00 40 1.00 1.00 

19 65 0.14 0.01 555 0.01 0.00 7 0.75 0.60 670 0.82 0.74 

20 75 0.96 0.92 448 0.73 0.51 7 0.99 0.99 400 0.72 0.50 

21 43 1.00 0.98 86 1.00 1.00 7 0.98 0.96 48 1.00 1.00 

22 120 0.59 0.32 131 0.55 0.25 7 0.98 0.96 1 - - 

23 73 0.65 0.37 194 0.28 0.05 7 0.92 0.83 5 0.96 0.93 

24 71 0.73 0.47 107 0.49 0.24 7 1.00 1.00 1 - - 

 

 
reducts. 

4. Rules 

Using the RST modeling tool, a large number of rules for 
each system are generated. The following criteria were used for 
the generation of such rules. The maximum rule length is set 
equal to three, the minimum relative strength is varied between 
50% and 80%, and the minimum discrimination level is set 
equal to 100%. This results in three strong rules, on average, 
for each system. For example, for System 2, some of the 
generated rules (with the highest coverage) include the 
following: 

(NN = 7) & (DT = 42) ⇒ (TBF = 0.81) 
(NN = 1) & (TBF = 0.59) ⇒ (DT = 239) 
(DT = 30) ⇒ (FT = 6) 

 
(FT = 6) ⇒ (NN = 21) 

Due to the space limitations, the complete set of generated 
rules is omitted. Also, for System 16, some rules using 
workload type as a decision were generated. Examples of these 
rules include: 

(NN = 0) ⇒  (WT = 3) 
(MM = 32) ⇒  (WT = 2) 
However, these rules are of no importance to failure analysis. 

Also for System 18, some rules that show the dependency 
between some failure characteristics and the size of the 
memory are generated. For example,  

(FT = 6) & (TBF = 0.06) ⇒  (MM = 32) 
(DT = 49) ⇒  (MM = 32). 
In addition, for System 22, some rules revealed a 

dependency between the number of processors in a node and 
the time between failures, which suggests that the hardware 
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Table 6. Core attributes and quality of classification. 

System ID 
TBF DT FT NN 

Core Quality Core Quality Core Quality Core Quality 

2 NN, DT, FT 0.67 NN, FT, TBF 0.26 NN, DT, TBF 0.65 TBF, DT, FT 0.76 

3 NN, DT, FT 0.98 NN, FT, TBF 0.90 NN, DT, TBF 0.99 TBF, DT, FT 0.92 

4 NN, DT, FT 0.93 NN, FT, TBF 0.86 NN, DT, TBF 1.00 TBF, DT, FT 0.91 

5 NN, DT, FT 0.99 NN, FT, TBF 0.83 NN, DT, TBF 1.00 TBF, DT, FT 0.93 

6 NN, DT 0.96 NN, FT, TBF 0.84 DT 0.96 DT, TBF 1.00 

7 DT, FT 0.69 FT, TBF 0.62 DT, TBF 0.98 DT, TBF 1.00 

8 NN, DT, FT 0.97 NN, FT, TBF 0.79 NN, DT, TBF 0.99 DT, FT, TBF 0.96 

9 NN, DT, FT 0.92 NN, FT, TBF 0.91 NN, DT, TBF 0.99 TBF, DT, FT 0.73 

10 NN, DT, FT 0.97 NN, FT, TBF 0.92 NN, DT, TBF 0.93 TBF, DT, FT 0.80 

11 NN, DT, FT 0.95 NN, FT, TBF 0.94 NN, DT, TBF 0.99 TBF, DT, FT 0.78 

12 NN, DT, FT 0.92 NN, FT, TBF 0.89 NN, DT, TBF 1.00 TBF, DT, FT 0.78 

13 NN, DT, FT 0.94 NN, FT, TBF 0.92 NN, DT, TBF 0.99 TBF, DT, FT 0.80 

14 NN, DT, FT 0.88 NN, FT, TBF 0.84 NN, DT, TBF 1.00 DT, TBF 0.64 

15 DT, FT 0.75 FT, TBF 0.38 DT, TBF 1.00 TBF, DT, FT 0.63 

16 NN, DT, FT 0.60 NN, FT, TBF 0.38 NN, DT, TBF 0.92 TBF, DT, FT 0.79 

17 DT, FT 1.00 FT, TBF 0.44 DT, TBF 0.80 TBF, DT, FT 0.74 

18 NN, DT 1.00 NN, TBF 1.00 None - DT, TBF 1.00 

19 DT, FT 0.14 FT, TBF 0.01 DT, TBF 0.75 DT, TBF 0.77 

20 NN, DT, FT 0.96 NN, FT, TBF 0.73 NN, DT, TBF 0.99 TBF, DT, FT 0.72 

21 NN, DT 0.98 NN, FT, TBF 1.00 DT 0.79 DT, TBF 1.00 

22 DT, FT 0.59 FT, TBF 0.55 DT, TBF 0.98 TBF, DT, FT 0.93 

23 NN, DT, FT 0.65 NN, FT, TBF 0.28 DT, TBF 0.88 MM, DT, TBF 0.96 

24 DT, FT 0.73 FT, TBF 0.49 DT, TBF 1.00 None - 

 

 

 

Fig. 1. Frequency of attributes in the core using each of the four 
basic characteristics as decisions. 
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specifications have an influence on the failure of some systems. 
Moreover, using FT as a decision, we had to relax the criteria 
for the generation of rules to have 30% relative strength and 
80% discrimination level for Systems 15, 17, and 18. This 
indicates less correlation between FT and the other attributes in 

 

Table 7. Systems with reducts that are different from the core. 

System ID Decision Reducts 

16 NN {MM, DT, FT, TBF}, {WT, DT, FT, TBF}

16 WT {NN}, {MM} 

6 FT {NN, DT}, {DT, TBF} 

18 MM {NN}, {DT, TBF} 

23 FT {NN, DT, TBF}, {MM, DT, TBF} 

 

 
these systems. For some systems (for example, 10), even when 
we relaxed the rule-generation criteria, no decent rules could be 
generated. The rules with the highest coverage were obtained 
for System 8 using FT as decision (about 88%). On the other 
hand, the rules with the lowest coverage were obtained for 
System 2 using TBF as a decision. On average, the obtained 
rules have a coverage of about 70%. 
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5. Failure Prediction 

We used the set of rules that were generated in the previous 
section in building a predictor of failures. The prediction is 
based on classification techniques. The RST tool employs the 
L-metrics classifier [21]. As for any classification technique, 
the set of data for each system is divided into two sets: the first 
is used for learning (70% of the data), while the second is for 
testing. However, the obtained accuracy highly depends on the 
system, the type of the validation test (leaving-one-out or k-fold 
cross validation), and the decision attribute. The highest 
obtained accuracy was 83.6% for System 6, using k-fold cross 
validation with k = 10 and the failure type as a decision 
attribute. On the other hand, the lowest classification accuracy 
was 54% for System 16, using TBF as a decision with 10-fold 
cross validation. Other experiments yielded accuracies that 
varied between 56% and 77%. 

V. Conclusion and Future Work 

Failure analysis of HPC systems is necessary to improve 
system reliability. Thus, we need an intelligent, scalable, and 
efficient method for this task. In this paper, we proposed an 
RST-based approach for the failure analysis of the first ever 
release of large-size failure data of HPC systems. Using the 
capabilities of RST as a powerful analysis tool, the minimum 
sets of factors related to each failure characteristic can be found. 
In addition, the complete set of data for each system can be 
analyzed without facing scalability problems. Obtained results 
show strong dependency between the time between failures 
and the down times. Also, in contrast to some previous works 
(for example, [4]), results show a very weak dependency 
between the time between failures and the workload type 
running on a failed node. In addition, new relationships were 
revealed among the attributes of the failure data. For example, 
the results show that, for some systems, there is a dependency 
between the hardware specification of a node (the size of the 
internal memory) and the failure type.  

It should be mentioned that the sets of rules that were 
generated for each system could not be used for generalization 
since the support (coverage) of most rules was relatively low.  
However, they can be used for revealing some sort of 
dependencies between the attributes of a failure and its 
characteristics.  

Additional work is needed to extract the optimal set of rules 
describing each system and to utilize these rules in the building 
of a predictor of failures with high accuracy. Another important 
point, in need of extra investigation, is the effect of the 
discretization of the time between failures and the down time 
on the quality of the obtained rules. We think that if these 

attributes are properly discretized, the accuracy of the predictor 
can be highly improved.  
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