International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, March. 2002 pp. 26-32

Cluster-based Information Retrieval with
Tolerance Rough Set Model

Tu Bao Ho, Saori Kawasaki, and Ngoc Binh Nguyen“

* Japan Advanced Institute of Science and Technology,
Tatsunokuchi, Ishikawa, 923-1292 Japan
** Hanoi University of Technology, DaiCoViet Road, Hanoi, Vietnam

Abstract

The objectives of this paper are twofold. First is to introduce a model for representing documents with semantics relatedness
using rough sets but with tolerance relations instead of equivalence relations (TRSM). Second is to introduce two document
hierarchical and nonhierarchical clustering algorithms based on this model and TRSM cluster-based information retrieval using
these two algorithms. The experimental results show that TRSM offers an alternative approach to text clustering and information

retrieval.

Key words: tolerance rough set model, document clustering, information retrieval.

| . Introduction

Document clustering, the grouping of documents into
several clusters, has been recognized as a means of improving
efficiency and effectiveness of text retrieval. With the growing
importance of electronic media for storing and exchanging
large textual databases, document clustering becomes more
significant. Document clustering helps the user to exploit
large document collections in several ways, such as it enables
the user to select and tackle only part of the collection that is
relevant to his/her interest, or it assists the user from members
and representatives of clusters to uncover topics, hypotheses,
concepts, or novel nuggets. However, document clustering is
a difficult clustering problem by a number of reasons [2], [4],
[14]. The main difficulty comes from the unstructured form
and textual characteristics of documents. As a consequence,
the quality of document clustering not only depends on clus-
tering algorithms but also largely depends on document
representation models.

Rough set theory, a mathematical tool to deal with
vagueness and uncertainty introduced by Pawlak in early
1980s [7], has been successful in many applications [5], [8].
In this theory each set in a universe is described by a pair of
ordinary sets called lower and upper approximations,
determined by an equivalence relation in the universe. The use
of the original rough set model in information retrieval
referred to as the equivalence rough set model (ERSM) has
been investigated by several researchers [9], [13]. A
significant contribution of ERSM to information retrieval is
that it suggested a new way to calculate the semantic
relationship of words based on an organization of the

Manuscript received 2001 ; revised

Nobember 10. 2001.

september 15,

26

vocabulary into equivalence classes.

However, as analyzed in [3], ERSM is not suitable for
information retrieval and text processing in general due to the
fact that the requirement of the transitive property in
equivalence relations is too strict to the meaning of words,
and there is no way to calculate automatically equivalence
classes of terms. Inspired by some works that employs
different relations to generalize new models of rough set
theory, e.g., [11], [12], a tolerance rough set model (TRSM)
for text processing that adopts tolerance classes instead of
equivalence classes has been developed [3].

In this work we extend TRSM in [3] and introduce two
TRSM-based hierarchical nonhierarchical document
clustering algorithms, as well methods for cluster-based
information retrieval (IR). These algorithms have been
evaluated and validated experimentally on IR test collections.
The results show advantages of the model, particularly in
improving precision in information retrieval. Section 2 of the
paper presents the TRSM for representing documents. Section
3 describes two TRSM clustering algorithms. Section 4
presents a evaluation and validation of these algorithms, and
section 5 addresses the TRSM cluster-based information retri-
eval.

and

Il. The tolerance rough set model

Given a set D={d;, d, ..., du}of M full text documents.
Each document d; is mapped into a list of terms # each is
assigned a weight that reflects its importance in the document.
Denote by f (#) the number of occurrences of term # in &
(term frequency), and by fu(f)) the number of documents in D
that term # occurs in (document frequency). The weights wy
of terms ¢ in documents d; are first calculated by

Cluster-based Information Retrieval with Tolerance Rough Set Model

w0y (1 + log (f4,(2)) X log 7o) f Led; M
0 lf ti¢ dij

then normalized by w; < wy/{ 2, ca wy;)® Bach docu-

ment d; is represented by its r highest-weighted terms, i. e., d;
= (ty;, Wiy bj, Waj; ... by, wy) where wy [0, 1]. A usual way is
to fix a default value » common for all documents. The set of
all terms from D and queries Q are denoted with ¢; & T and
wi, € [0,1] by

T= {tl,tg, ...,tN}

Q':(ql! Wigs d2, Wygs5..es Qs wsq)

The tolerance rough set model(TRSM) aims to enrich the
document representation in terms of semantics relatedness by
creating tolerance classes of terms in 7 and approximations of
subsets of documents. The model has the root from rough set
models and its extensions [7], [11]. The key idea is among
three properties of an equivalence relation R in an universe U
used in the original rough set model (reflexive: xRx;
symmetric: xRy —yRx ; transitive : xRy AyRz — xRz for Vx,y,
z €U), the transitive property does not always hold in natural
language processing, information retrieval, and consequently
text data mining. In fact, words are better viewed as
overlapping classes that can be generated by tolerance
relations (requiring only reflexive and symmetric properties).

Denote by fo(t;, t) the number of documents in D in which
two index terms # and # co-occur. We define an uncertainty
function 7 depending on a threshold &:

Io(8) = {4 | folti, 8= 0YU {8})

It is clear that the function I? defined above satisfies the
condition of # € Ig(t) and 4 € Io(t;) iff #; 14(2) for any #, ¢
€T and so I, is both reflexive and symmetric. This function
corresponds to a tolerance relation / S T X T that #ly; iff t; €
Ig(t), and I4(t) is the tolerance class of index term f£. A
vague inclusion function, v, which determines how much X is
included in ¥, is defined as

ux, v =400 3

This function is clearly monotonous with respect to the

second argument. Using this function the membership function
u for t; €T, XS Tcan be defined as

|14t N X]

/A(t,‘,)():y(lg (ti)’X)= I.q(ti) (4)

With these definitions we can define a tolerance space as R
=(T,1, v, P)in which the lower approximation L(R, X)and
the upper approximation u(R, X) in R of any subset XC T
can be defined as

LIRX)={t€T|v(l, (), X) =1} &)
WRX) = (t,€ T| w(I, (£),X)>0) ©)
The vector length normalization is then applied to the upper

approximation #(R, X) of d. Note that the normalization is
done when considering a given set of index terms.

The term-weighting method defined by Eq. (1) is extended
to define weights for terms in the upper approximation #(R,
d;) of d;. It ensures that each term in the upper approximation
of d; but not in d; has a weight smaller than the weight of
any term in d.

Table 1. A document and its TRSM representation

MED _1: correlation between maternal and fetal plasma levels
of glucose and free fatty acids. correlation coefficients have
been determined between the lévels of glucose and ffa in
maternal and fetal plasma collected at delivery significant
correlations were obtained between the maternal and fetal
glucose levels and the maternal and fetal ffa levels. from the
size of the correlation coefficients and the slopes of regression
lines it appears that the fetal plasma glucose level at delivery
is very strongly dependent upon the maternal level whereas the
fetal ffa level at delivery is only slightly dependent upon the
maternal level.

MED_1 : 21-0.178679, 44-0.094230, 48-0.228942,
57-0.235588, 110-0.257558, 198-0.328567, 299-0.126899,
403-0.371317, 437-0.136658, 683-0.306114, 692-0.306114,
694-0.306114, 1840-0.289422, 2546-0.189904,

4546-0.321535.

’ (1+ log (/4 (M x log 745 i d,

log (M/ (22
1+ log(M/fp(t)

0 tE(R. d)

Wi = e (R, d,)\d, (7)

min e duw,

lll. TRSM Clustering Algorithms

3.1 Algorithms

Table 2 describes the general TRSM-based hierarchical
clustering algorithm that is an extension of the hierarchical
agglomerative clustering algorithm.

The main point here is at each merging step it uses upper
approximations of documents in finding two closest clusters to
merge. Several variants of agglomerative clustering can be
applied, such single-link or complete-link clustering.

As documents are represented as length-normalized vectors
and when cosine similarity measure is used, an efficient
alternative is to employ the group-average agglomerative
clustering. The group-average clustering avoids the elongated
and straggling clusters produced by single-link clustering, and
avoids the high cost of complete link clustering. In fact, it
allows using cluster representatives to calculate the similarity
between two clusters instead of averaging similarities of all
document pairs each belong to one cluster [6], [14]. In such a
case, the complexity of computing average similarity would be
O(N2). Table 3 describes the TRSM nonhierarchical clustering
algorithm. It can be considered as a reallocation clustering
method to form K clusters of a collection D of M documents

(2]

27

international Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, March. 2002

Table 2. TRSM hierarchical clustering algorithm
Input D = {d,, da, ..., du}
a similarity measure S : P(D)X P(D)—R"
Result A hierarchical structure of D

1. Initially, consider each document of D as a cluster with one
member C; = {d;}, and H = {C;, C3, ..., Cu}.

2. Identify two most similar clusters in terms of upper

approximations of their representatives, (Cu, Cn2)=
argmaxcucy St SR, CJ, uR, C))
3. Form a new cluster C; = Cyy U Gy and let H = (H-{ C,,

Ca})U{G }.
4. If more than one cluster remains, return to steps 2 and 3.

Table 3. TRSM nonhierarchical clustering algorithm

Input D = {d;, d3, ...,

Result K clusters of documents with their membership.

dy } and the number K.

1. Determine the initial representatives R;, Ry, ..., Ri of clusters
C, Cs, ..., Cx as K randomly selected documents in D.

2. For each df € D, calculate the similarity S(u(R d)), Ri)
between its upper approximation #(R, d) and the cluster
representative Ry, £ = 1, ..., K. If this similarity is greater
than a given threshold, assign d to C, and take this
similarity value as the cluster membership m(d;) of 4; in C;.

3. For each cluster C; re-determine its representative Ri.

4. Repeat steps 2 and 3 until there is little or no change in
cluster membership during a pass through D.

5. Denote by d, an unclassified document after steps 2, 3, 4
and by NN(d,) its nearest neighbor document (with non-zero
similarity) in formed clusters. Assign d, into the cluster that
contains NN(d,), and determine the cluster membership of
d, in this cluster as the product m{d.)=m(NN(d.,)X
S(u(R,d,), u(R,(NN(d,))). Re-determine the representatives Ry,
for k=1, ..K.

The distinction of the TRSM nonhierarchical clustering
algorithm is it forms overlapping clusters and it uses
approximations of documents and cluster's representatives in
calculating their similarity. The latter allows us to find some
semantic relatedness between documents even when they do
not share common index terms. After determining initial
cluster representatives in step 1, the algorithm mainly consists
of two phases. The first does an iterative reallocation of
documents into overlapping clusters by steps 2, 3 and 4. The
second does by step 5 an assignment of documents that are
not classified in the first phase, into clusters containing the
nearest neighbors with non-zero similarity. We consider other
issues that have an important influence on the clustering
quality (i) how to define the representatives of clusters; and
(ii) how to determine the similarity between documents and
the cluster representatives.

3.2 Representatives of clusters

The TRSM clustering algorithm constructs a polythetic
representative R; for each cluster Cy, k = 1, ..., K. In fact, R«

28

is a set of index terms such that:

(i) each document d; € C; has some or many terms in
common with R ;
(ii) terms in R are possessed by a large number of ¢ € Cy ;
(iii) no term in R must be possessed by every document in
Cr.

It is known that the Bayesian decision rule with minimum
error rate will assign a document dj in the cluster Cp if

P(d;| COP(Cr) > P(d;| Ch) P(Ch), ®

With the assumption that terms occur independently in
documents, we have

P(d;| C = Pt | CoP(bz2] Co)--Pltp | Ci) ®

Keywords selection

Docu Tolerance classes generation

collection
(selected keywords)

Approximation generation

Tolerance
classes of
terms

oxlmatlun Lower appradmaticn
- - of documents
hical Hi

I Hierarchical and Non-Hi hical Clustenrg for D |

Fig. 1. Conceptual architecture of the system

Denote by fod#) the number of documents in C; that
contain #, we have P(t;| Cx) = fot:)/|Cl. Eq. (9) and heuristics
of the polythetic properties of the cluster representatives lead
us to adopt rules to form the cluster representatives:

(i) Initially, Re = ¢

(ii) For all d € C; and for all 4 € d},
if fo(t)/| Ce| > othen Ry = Ry U t.

(iii) If d € Cx and d; N Ry * ¢ then
Ry U argmax i eq Wi

In case of group-average clustering, o could be 0 to ensure
the use of cluster representatives when calculating the cluster
similarity. The weights of terms # in R is first averaged by
of weights of this terms in all documents belonging to C, ie.,
wa = (2 geqw;) /|{dy t; Edj}|, then normalized by the

length of the representative Ri.

3.3 Document and cluster similarity

Many similarity measures between documents can be used
in the TRSM clustering algorithm. Three common coefficients
of Dice, Jaccard and Cosine {2] are calculate the similarity
between pairs of documents dj; and djp. For example, the
cosine coefficient is implemented in the TRSM clustering
program to

3= 1w X wip)

VN (wi) % 20 (wip)

Sc(d; ’ d/Z) = (10)

Cluster-based Information Retrieval with Tolerance Rough Set Mode!

It is worth to note that the cosine coefficient (or any other
well-known similarity coefficient used for documents [2])
yields a large number of zero values when documents are
represented by » terms as many of them may have no terms
in common. The use of the tolerance upper approximation of
documents and of the cluster representatives allows the TRSM
algorithm to improve this situation. In fact, in the TRSM
clustering algorithm, the normalized cosine coefficient is
applied to the upper approximation of documents u(R d;), and
cluster representatives u(R Ry).

Two main advantages of using upper approximations are:
(i) To reduce the number of zero-valued coefficients by
considering documents themselves together with the related
terms in tolerance classes; and (ii) The upper approximations
formed by tolerance classes make it possible to relate
documents that may have few (even no) terms in common
with the user's topic of interest or the query.

Table 4. Test collections

Collections | Subject Doc. query Rel. doc
JSAI Al 802 20 32
CACM |Comp. Sci. 3200 64 15
CISI Lib. Sci. 1460 76 40
CRAN Aero. 1400 225 8
MED Medicine 3078 30 23

Table 5. Results of clustering tendency

% average of relevant documents
Avg.

0 1 2 3 4 5
JSAI 199 | 198 | 185 | 185 | 118 | 115 | 22
CACM 503 |225]128| 79 | 42 | 23 1.0
CISI 454 | 258 | 150 | 75 | 43 1.9 1.1
CRAN 3341327 192 90 | 46 | 10 | 1.2
MED 104 1187 | 186 | 216 | 196 | 111 | 25

Table 6. Synthesized results about the stability

Percentage of changed data
4 1% 2% 3% 4% 5% | 10% | 15%
2 284 | 562 | 720 | 566 | 548 | 11.26 | 14.41
3 355 | 464 | 451 | 633 | 793 | 12.06 | 15.85
4 097 | 265 | 274 | 422 | 562 | 802 | 13.78

IV. Validation and Evaluation

Fig. 1 shows the conceptual architecture of the TRSM
clustering system. Table 4 summarizes test collections used in
our experiments including JSAI where each document is
represented in average by 5 keywords and four other common
test collections CACM, CISI, CRAN and MED [2]. Columns
3, 4, and 5 show the number of documents, queries, and the
average numbers of relevant documents for queries. The
clustering quality for each test collection depends on
parameter § in TRSM and on ¢ in clustering algorithm. We
can note that the higher value of 8 the large upper
approximation and the smaller lower approximation of a set X.

Our experiments suggested that when the average number
of terms in documents is high and/or the size of the document
collection is large, high values of § are often appropriate and
vice-versa. In Table 9 we can see how retrieval effectiveness
relates to different values of 6. To avoid biased experiments
when comparing algorithms we take default values 6 =15,
and ¢=0.1 for all five test collections.

4.1 Validation of Clustering Tendency

The experiments for clustering tendency “attempt to
determine whether worthwhile retrieval performance would be
achieved by clustering a document collection, before investing
the computational resources which clustering the database
would entail” [2]. We employ the nearest neighbor test [14]
by considering, for each relevant document of a query, how
many of its » nearest neighbors are also relevant; and by
averaging over all relevant documents for all queries in a test
collection in order to obtain single indicators. We use in these
experiments five test collections with all queries and their
relevant documents.

The experiments are carried out to calculate the percentage
of relevant documents in the database that had 0, 1, 2, 3, 4,
or 5 relevant documents in the set of 5 nearest neighbors of
each relevant document.

Table 5 reports the experimental results synthesized from
those done on five test collections. Columns 4 and 5 show the
number of queries and total number of relevant documents for
all queries in each test collection. The next six rows stand for
the percentage average of the relevant documents in a
collection that had 0, 1, 2, 3, 4, and 5 relevant documents in
their sets of 5 nearest neighbors. For example, the meaning of
row JSAI column 11 is “among all relevant documents for 20
queries of JSAI collection, 11.5 % of them have 5 nearest
neighbor documents are all relevant documents”. The last
column shows the average number of relevant documents
among 5 nearest neighbors of each relevant document. This
value is relatively high for JSAI and MED collections and
vice-versa for the others.

As the finding of nearest neighbors of a document in this
method is based on the similarity between the upper
approximations of documents, this tendency suggests if the
TRSM clustering method might appropriately be applied for
retrieval purpose. This tendency can be clearly observed in
concordance with the high retrieval effectiveness for JSAI and
MED shown in Table 9.

4.2 Validation of Clustering Stability

The experiments were done for the JSAI test collection in
order to validate the stability of the TRSM clustering, i.e., to
verify that whether the TRSM clustering method produces a
hierarchy which is unlikely to be altered drastically when
further documents are incorporated. For each value 2, 3, and 4
of 6, the experiments are done 10 times each for a reduced
database of size (100 - s) % of D. We randomly removed a
specified amount of s % documents from the JSAI database,
and re-determined the new tolerance space for the reduced
database. Once having the new tolerance space, we perform

29

International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, March. 2002

Table 7 . Performance Measurements of the TRSM Cluster-based Retrieval

. size | Nb. of | Nb.of | TRSM HC NHC Full I-Clister | HM NHM

collection (MB) | Doc. | query Time Time Time | Search | Search | (MB) | (MB)
JSAI 0.1 802 20 2.4s 14.9s 80s 0.8s 0.1s 8 12
CACM 2.2 3200 64| 22m2.2s| 26md6.8s| 2m26s 133s 1.2s 201 15
CISI 2.2 1460 76| 13mi6.8s; 4m49.8s 18s 40.1s 34s 84 13
CRAN 16 1400 225 23mb6.9s 3m6.9s 13s 20.5s 1.8s 71 13
MED 1.1 1033 430 0.1s| 1m30.8s 4s 2.5s 0.3s 25 28

the TRSM clustering algorithm and evaluate the change of
clusters due to the change of the database. Table 6 synthesizes
the experimental results with different values of s from 210
experiments with s % =1 %, 2 %, 3 %, 4 %, 5 %, 10 %
and 15 %.

Note that a little change of data implies a possible little
change of hierarchy (about at the same percentage as for 6 =
4). The experiments on the stability for other test collections
have nearly the same results as those of JSAL It suggests that
the TRSM hierarchical clustering results are stable.

4.3 Hierarchical Clustering Efficiency

From a given collection of documents we need to prepare
all the files before running the TRSM clustering algorithms. It
consists of making an index term file, term encoding,
document-term and term-document (inverted) relation files as
indexing files, files of term co-occurrences and tolerance classes
for each value of 4.

A direct implementation of these procedures requires the
time complexity of O(M+N), but we implemented the system
by applying a sorting algorithm (quick-sort) of O(N log N) to
make the indexing files, then created the TRSM related files
for the term co-occurrence, tolerance classes, upper and lower

approximations files in the time of O(M*N).

The experiments reported in this paper were performed on
a conventional workstation GP7000S Model 45 (Fuyjitsu, 250
MHz Ultra SPARC-II, 512 MB). We can note that the search
for clusters requires in average log M, then the search will be
done with a subset of documents in the clusters. However, the
time complexity of the clustering is of O(]Vf +N), and the
space is of O(M*+N), because of using an MXM -matrix to
store the similarities/distances between clusters in the
hierarchy. Concerned with generating the TRSM files for the
JSAI database, the direct implementation with OW+M),
required up to 6 minutes [14 hours for CRAN], but the
quicksort-based implementation with O(V log N) took about 3
seconds (JSAI) [23 minutes for CRAN] for making the files
by running a package of shell scripts on UNIX.

Table 7 summaries the time for generating the TRSM files,
clustering, full search, cluster-based search, and the required
memory size for each collection. The clustering time included
the time for reading the TRSM files into the RAM memory.
Thanks to short time for preparing the database files as well
as shorter time for cluster-based search in comparing with the
full search, the proposed TRSM-based method can be applied
to large document collections.

Table 8 Precision and recall of TRSM cluster-based retrieval and full search

30

12% (0.18) | 1.8% (0.16) | 29% (0.14) | 80% (0.11) | 169% (0.09) | Full search

Collecton ™ " | p [R | P | R | P | R| P| R | P | R
JSAI 0950 | 0472 | 0048 | 0485 | 0.949 | 0502 | 0939 | 0541 | 0.938 | 0559 | 0934 | 0.560
CACM | 0048 | 0037 | 0.096 | 0.068 | 0.100 | 0.084 | 0.116 ' 0.194 | 0.105 | 0.262 | 0.160 | 0.241
CISI 0.181 | 0.043 | 0.180 | 0.061 | 0.180 | 0.089 | 0.130 ‘ 0183 | 0.112 | 0.261 | 0.155 { 0.204
CRAN | 0121 | 0.127 | 0.140 | 0.149 | 0.139 | 0.173 | 0.139 “ 0214 | 0112 | 0.245 | 0.257 | 0.301
MED 0477 | 0288 | 053 | 0324 | 0565 | 0.375 | 0518 ' 0430 | 0422 | 0531 | 0415 | 0421
1 cluster 2 clusters 3 clusters 4 clusters 5 clusters Full search

Collection | p R P R P R P R p R P R
JSAI 0973 | 0375 | 0.950 | 0458 | 0937 | 0519 | 0936 | 0544 | 0932 | 0534 | 0934 | 0.560
CACM | 0098 | 0.063 | 0.100 | 0.100 | 0.117 | 0.166 | 0.132 | 0221 | 0.144 | 0.240 | 0.160 | 0.241
CISI 0.177 | 0078 | 0.141 | 0.141 | 0.151 | 0.179 | 0.156 | 0.206 | 0.158 | 0.212 | 0.155 | 0.204
CRAN | 0204 | 0219 | 0238 | 0238 | 0250 | 0.290 | 0.257 | 0.301 | 0.261 | 0.304 | 0.257 | 0.301
MED 0393 | 0277 | 0396 | 039 | 0372 | 0425 | 0.367 | 0445 | 0.380 | 0472 | 0415 | 0421

Cluster-based Information Retrieval with Tolerance Rough Set Model

Table 9. Precision and recall of TRSM and VSM full retrieval

JSAI CACM CISI CRAN MED

6 P R p R P R P R P R
30 0934 | 0560 | 0.146 | 0231 | 0147 | 0192 | 0265 | 0.306 | 0416 | 0426
25 0934 | 0560 | 0158 | 0242 | 0151 | 0194 | 0266 | 0310 | 0416 | 0426
20 0934 | 0560 | 0159 | 0243 | 0150 | 0194 | 0268 | 0311 | 0416 | 0426
15 0934 | 0560 | 0.160 | 0241 | 0155 | 0204 | 0257 | 0301 | 0415 | 0421
10 0934 | 0560 | 0141 | 0221 | 0142 | 0178 | 0255 | 0302 | 0414 | 0.387
8 0934 | 0560 | 0151 | 0254 | 0138 | 0172 | 0242 | 0291 | 0393 | 0.3%6
6 0945 | 0550 | 0141 | 0223 | 0146 | 0.178 | 0233 | 0271 | 0376 | 0365
4 0904 | 0509 | 0137 | 0182 | 0152 | 0145 | 0233 | 0241 | 0356 | 0.383
2 0803 | 0522 | 0111 | 0097 | 0125 | 0057 | 0247 | 0210 | 0360 | 0193
VSM 0934 | 0560 | 0.147 | 0232 | 0139 | 0.184 | 0258 | 0295 | 0429 | 0444

V. TRSM Cluster-based Information Retrieval

We show the potential of the method in terms of
cluster-based effectiveness and efficiency in application to
information retrieval [2], [14]. The quality of generated
hierarchy is evaluated in terms of information retrieval.

The experiments evaluate effectiveness of the TRSM
cluster-based retrieval by comparing it with full retrieval by
using the common measures of precision and recall. Precision
P is the ratio of the number of relevant documents retrieved
over the total number of documents retrieved. Recall R is the
ratio of relevant documents retrieved for a given query over
the number of relevant documents for that query in the
database. Precision and recall are defined as

| RelN Ret|

| RelN Ret|
| Ret| an

| Ret|

P= R=

where Rel C D is the set of retrieved documents in the
database for the query, and Rer C D is the set of retrieved
documents. Table 9 shows precision and recall of the
TRSM-based full retrieval and the VSM-based full retrieval
(Vector Space Model) where the TRSM-based retrieval is done
with values 30, 25, 20, 15, 10, 8, 6, 4, and 2 of 4.

After ranking all documents according to the query,
precision and recall are evaluated on the set of retrieved
documents determined by the default cutoff value as the
average number of relevant documents for queries in each test
collection. From Table 9 we see that precision and recall for
JSAI are high, and they are higher and stable for the other
collections with @ > 15. With these values of &, the
TRSM-based retrieval effectiveness is comparable or somehow
higher than that of VSM.

5.1 Hierarchical cluster-based information retrieval

We carried out retrieval experiments on all queries of test
collections. Each query in the test collection is matched
against the hierarchy form the root in the top-down direction

in order to determine a subset D C D. The subset D' is union
of all clusters each has the similarity between the query and
its representative greater than a threshold y . The cluster-based
retrieval is carried out in D.

Table 9 reports the average of precision and recall for all
queries in test collections using the TRSM cluster-based
retrieval with various proportion (%) of |D'| to |D]), and full
retrieval in whole D(accordingly, values y . The results show
that in several cases (JSAI, CISI, and MED) just searching a
small part of D, says 1.2 % or 1.8 %, TRSM cluster-based
search reaches precision higher than that of full search. Also,
the TRSM cluster-based search achieved recall higher than
that of full retrieval on most collections when |D'| is about 17
% of D).

Table 10 reports the effectiveness of TRSM cluster- based
retrieval (TRSM) versus VSM cluster-based retrieval (VSM)
when |D'| is 2.9 %, 8.0 %, and 16.9 % of |D|. It shows that
TRSM cluster-based retrieval often achieves precision higher
than that of VSM cluster-based retrieval thought its recall is
somehow lower. The results suggest that TRSM can be used
to improve precision of information retrieval, and so in a
certain tasks of text mining.

5.2 Nonhierarchical cluster-based information retrieval

The lower half of Table 8 reports the average of precision
and recall for all queries in test collections using the TRSM
cluster-based retrieval with 1, 2, 3, 4 clusters, and full
retrieval (15 clusters). Usually, along the ranking order of
clusters when cluster-based retrieval is carried out on the more
clusters we obtain higher recall value. Interestingly, the TRSM
cluster- based retrieval achieved higher recall than that of full
retrieval on several collections. More importantly, the TRSM
cluster-based retrieval on four clusters offers precision higher
than that of full retrieval in most collections. Also, the TRSM
cluster-based retrieval achieved recall and precision nearly as
that of full search just after searching on one or two clusters.
These results show that the TRSM cluster-based retrieval can

31

International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, March. 2002

contribute considerably to the problem of improving retrieval
effectiveness in information retrieval.

Vi. Conclusion

We have proposed document hierarchical and non-hierarchical
clustering algorithms based on the tolerance rough set model
(TRSM) of tolerance classes of index terms, and developed a
TRSM cluster-based method for information retrieval. Careful
experiments have been done on test collections for evaluating
and validating the proposed method on the clustering tendency
and stability, the efficiency as well as effectiveness of
cluster-based retrieval using the clustering results.

There are still many further works to do in this research:
(1) to investigate the parameters of TRSM and their influence
on text mining algorithms; (2) to incrementally update
tolerance classes of terms and document clusters when new
documents are added to the collections; (3) to extend the
tolerance rough set model by considering the model without
requiring a symmetric similarity or tolerance classes based on
co-occurrence between more than two terms; and (4) to
combine TRSM-based hierarchical and nonhierarchical
clustering for very large text collections.

References

[1] Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information
Retrieval, Addison Wesley, 1999.

[2] Fakes, W. B. and Baeza-Yates, Information Retrieval. Data
Structures and Algorithms (eds.), Prentice Hall, 1992.

[3] Ho, T. B. and Funakoshi K., “Information retrievel using
rough sets”, Journal of Japanese Society for Artificial
Intelligence, vol. 13, no. 3, pp. 424-433, 1998.

[4] Lebart, L., Salem, A., and Berry, L., Exploring Textual
Data, Kluwer Academic Publishers, 1998.

[5] Lin, T. Y. and Cercone, N., Rough Sets and Data Mining,
Analysis of Imprecise Data(eds.), Kluwer Academic Pub-
lishers, 1997.

[6] Manning, C. D. and Schutze, H., Foundations of Stati-
stical Natural Language Processing, The MIT Press, 1999.

[7] Pawlak, Z., Rough sets: Theoretical Aspects of Reasoning
about Data, Kluwer Academic Publishers, 1991.

[8] Polkowski, L. and Skowron, A., Rough Sets in Know-
ledge Discovery 2. Applications, Case Studies and Software
Systems(eds.), Physica-Verlag, 1998.

[9] Raghavan, V. V. and Sharma, R.S., A Framework and a
Prototype for Intelligent Organization of Information ,
The Canadian Jowrnal of Information Science, vol. 11, pp.
88-101, 1986.

[10] Salton, G. and Buckley, C., Term-Weighting approaches
in automatic text retrieval, Information Processing &
Management, vol. 4, no. 5, pp. 513-523, 1998.

[11] Skowron, A. and Stepaniuk, J., Generalized approxi-
mation spaces, The 3rd International Workshop on

32

Rough Sets and Soft Computing, pp. 156-163, 19%4.

[12] Slowinski, R. and Vanderpooten, D., Similarity Relation as
a Basis for Rough Approximations, Advances in Machine
Intelligence and Soft Computing, P. Wang (ed.), vol. 4,
pp. 17-33, 1997.

[13] Srinivasan, P., The importance of rough approximations
for information retrieval, International Journal of Man-
Machine Studies, vol. 34, no. 5, pp. 657-671, 1991.

[14] Willet, P., Recent trends in hierarchical document clus-
tering: A critical review, Information Processing and
Management, pp. 577-597, 1988.

Tu Bao Ho

Tu Bao Ho received his B.E. degree from Hanoi University of
Technology in 1978, M.S. and Ph.D. degrees from University
Paris 6, in 1984 and 1987, and Habilitation from University
Paris 9 in 1998. He has been researcher at Institute of
Information Technology, National Center for Natural Sciences
and Technology of Vietnam since 1979, and professor at
School of Knowledge Science, Japan Advanced Institute of
Science and Technology (JAIST) since 1998. His research
interests include machine learning, knowledge discovery and
data mining, knowledge-based systems.

Phone & Fax: +81-761-51-1730

Email : bao@)jaist.ac.jp

Saori Kawasaki

Saori Kawasaki got her B.A. degree from Kyushu University
in 1989, and M.S. from Japan Advanced Institute of Science
and Technology (JAIST) in 2000. She is taking her doctoral
program at the School of Knowledge Science, Japan
Advanced Institute of Science and Technology (JAIST).
Email : skawasa@jaist.ac.jp

Ngoc Binh Nguyen

Ngoc Binh Nguyen received his B.S. in Applied Mathematics
from Kishinev University, Moldova (in former USSR) in
1982, M.E. from Toyohashi University of Technology in
1995, and Ph.D. from Osaka University in 1998. He was
researcher at Center for Applied Informatics, Hanoi University
of Technology during 1982-1992, research associate at the
School of Knowledge Science, Japan Advanced Institute of
Science and Technology (JAIST) during 1998-2000, and
currently is a principal lecturer at Faculty of Information
Technology, Hanoi University of Technology, Hanoi,
Vietnam. His research interests include Knowledge Discovery
in Databases, Parallel and Distributed Data Mining, Software
Engineering, Optimization Algorithms for Hardware/Software
Codesign.

Email : binhnn@it-hut.ac.vn

