• Title/Summary/Keyword: Rotor position estimator

Search Result 39, Processing Time 0.029 seconds

Eliminating Method of Estimated Magnetic Flux Offset in Flux based Sensorless Control Algorithm of Surface Mounted PM Synchronous Motor (표면부착형 영구자석 동기전동기의 자속기반 센서리스 제어 알고리즘의 추정자속 옵셋 제거 기법)

  • Kim, Hack-Jun;Cho, Kwan-Yuhl;Kim, Hag-Wone;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • The rotor position of a PM synchronous motor is commonly estimated from the mathematical model for the sensorless control without rotor position sensors. For the magnet flux-based rotor position estimator in the stationary reference frame, the magnet flux estimator for estimating rotor position and speed includes the integrator. The integrator in the magnet flux estimator may accumulate the offset of the current sensors and the voltage drift. This continuous accumulation of the offset may cause the drift and overflow in the integrator, such that the estimated rotor position and speed may fail to track the real rotor position and speed. In this paper, the magnet flux estimator without integrator is proposed to avoid overflow in the integrator. The proposed rotor position and speed estimator based on magnet flux estimator are verified through simulation and experiment.

A Study on the Characteristics of Thyristor Controlled Shunt Compensator (자속관측기를 이용한 유도전동기 센서리스제어의 특성해석)

  • 박용환;최종우;김흥근;김진규;최영태;노의철;전태원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.299-306
    • /
    • 2003
  • The rotor flux position is needed to perform vector control of induction motor. But rotor speed information is needed to get accurate the rotor flux position. It is difficult to implement the open loop method without speed information or the motor equation only because of noise or the motor parameter error. This paper presents the speed estimator can use the arbitrary rotor flux observer by separating the flux observer and speed estimator and apply the three flux observers proposed by Ohtani, Lorenz and full order flux observer. The validity of speed estimator presented is verified and the performance using the three rotor flux observers is analyzed by the simulation and experiment.

Sensorless Control of a Surface Mounted PM Synchronous Motor in Over Modulation Regions by Detecting Phase Voltages (영구자석 표면부착형 동기전동기의 과변조 영역에서 상전압 검출에 의한 센서리스 제어)

  • Choi, Hae-Jun;Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • The information on the actual voltages and actual currents of the motor is required for the sensorless control of a permanent magnet synchronous motor without rotor position sensors. In the model-based rotor position estimator of a PM synchronous motor, the reference voltages, which are the outputs of the current controller, are commonly used. The reference voltages in over-modulation regions for high-speed operation differ from the actual voltages applied to the motor. Consequently, the estimated rotor position and rotor speed may fail to track the real rotor position and real rotor speed. In this paper, the sensorless control for a PM synchronous motor in over-modulation regions for high-speed operation is proposed. The three-phase voltages applied to the motor are measured by using additional voltage detection circuits, and the performance of the rotor position estimator based on the measured three-phase voltages is validated through the experimental results.

Model Following Adaptive Controller with Rotor Resistance Estimator for Induction Motor Servo Drives (회전자 저항 추정기를 가지는 유동전동기 구동용 모델추종 적응제어기 설계)

  • Kim, Snag-Min;Han, Woo-Yong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.125-130
    • /
    • 2001
  • This paper presents an indirect field-oriented (IFO) induction motor position servo drives which uses the model following adaptive controller with the artificial neural network(ANN)-based rotor resistance estimator. The model reference adaptive system(MRAS)-based 2-layer ANN estimates the rotor resistance on-line and a linear model-following position controller is designed by using the estimated the rotor resistance value. At the end, a fuzzy logic system(FLS) is added to make the position controller robust to the external disturbances and the parameter variations. The simulation results show the effectiveness of the proposed method.

  • PDF

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

Implementation of a Senseless Position Controller Capable of Multi-turn Detection in a Turret Servo System (터렛 서보 시스템에서 멀티-턴 검출이 가능한 센서리스 위치제어기 구현)

  • Cho, Nae-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • This study is implemented as a sensor-less position controller capable of multi-turn detection to replace the expensive absolute encoder used in the turret servo system. For sensor-less control, the position information of the rotor is essential. For this, a magnetic flux estimator was implemented from the mathematical model of IPMSM used in the turret servo system. The position of the rotor and the angular velocity of the rotor were obtained using the rotor magnetic flux calculated from the magnetic flux estimator. Using the zero-crossing technique, one pulse was generated for each rotation of the estimated rotor magnetic flux to measure the number of multi-turns. Simulation and experiment results confirmed the usefulness of the proposed method.

A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

  • Wang, Chao;Liu, Xiao;Liu, Hui;Chen, Zhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estimated rotor position and the actual output of the position sensor. Extreme Learning Machine (ELM), which could build a nonlinear mapping among flux linkage, current and rotor position, is utilized to design an assembled estimator for the rotor position detection. The data for building the ELM based assembled position estimator is derived from the magnetization curves which are obtained from Finite Element Analysis (FEA) of an SRWG with the structure of 8 stator poles and 6 rotor poles. The effectiveness and accuracy of the proposed fault diagnosis method are verified by simulation at various operating conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG.

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors

  • Lee, Kwang-Woon;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.604-614
    • /
    • 2012
  • This paper presents a comparative study of position sensorless control schemes based on back-electromotive force (back-EMF) estimation in permanent magnet synchronous motors (PMSM). The characteristics of the estimated back-EMF signals are analyzed using various mathematical models of a PMSM. The transfer functions of the estimators, based on the extended EMF model in the rotor reference frame, are derived to show their similarity. They are then used for the analysis of the effects of both the motor parameter variations and the voltage errors due to inverter nonlinearity on the accuracy of the back-EMF estimation. The differences between a phase-locked-loop (PLL) type estimator and a Luenberger observer type estimator, generally used for extracting rotor speed and position information from estimated back-EMF signals, are also examined. An experimental study with a 250-W interior-permanent-magnet machine has been performed to validate the analyses.

Hall Sensor Fault Detection and Fault-Tolerant Control of High-Speed PMSM Drive System (고속 영구자석 동기전동기 구동장치의 홀센서 고장검출 및 보호제어)

  • Jang, Myung-Hyuk;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 2013
  • This paper presents a novel hall sensor fault detection and fault-tolerant control method for a high-speed permanent magnet synchronous motor (PMSM) drive system. A phase locked loop (PLL) type position estimator is used with a conventional interpolation based rotor position estimator to reduce position errors due to misalignment of hall sensors. The expected trigger time of hall sensor's output is used for detecting hall sensor fault condition and the PLL type position estimator is reconfigured for fault-tolerant control at the hall sensor fault condition. The proposed method can minimize current ripples during the transition from sensored control using hall sensors to sensorless control. Experimental results have been proposed to prove the validity of the proposed method.

A Robust Sensorless speed control of Sensorless BLDC Motor (센서리스 BLDC 전동기의 강인한 속도 제어)

  • Kim, Jong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The sensorless speed control technique for BLDC motor using digital IP control is proposed in this paper for advanced speed characteristic which is robust to motor parameters and load variations. The sensorless drive of BLDC motor using terminal voltages is affected by load or speed because it uses analog filters to estimate the rotor position. For this reason, the robust speed controller with the accurate rotor position estimator is needed for sensorless control which is robust to load and insensitive to motor parameters. The constant speed robust to load variation and the stable sensorless control of BLDC motor robust to the increase or decrease of speed with constant load is implemented using digital IP control in this paper. The validity to these is established with experimentation.

  • PDF