• Title/Summary/Keyword: Rotor angle estimation

Search Result 41, Processing Time 0.024 seconds

A Robust Indirect Vector Control of Induction Motor with On-Line Tuning of Rotor Time Constant in Wide Speed Range (전운전영역에서 회전자 시정수 온라인 동조에 의한 강인한 벡터제어)

  • 조순봉
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.201-208
    • /
    • 1999
  • This paper presents the degradation of the system performance according to the vmiation of the rotor time constant. The algorithm for the on-line estimation of rotor time constant is proposed. which is applied to the consistent relationship between the tangent torque angle of the synchronous reference frame and that of stationary reference f frame. For the purpose of the validity of proposed algorithm. the computer simulation and the experiments have been p performed.

  • PDF

Indirect angle test method for Switched Reluctance Motor drive (SRM구동을 위한 비간접 각 측정 방식)

  • Choi, J.D.;Kim, M.T.;Hwang, Y.S.;Seong, S.J.;Jeon, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2767-2769
    • /
    • 1999
  • This paper introduces a new rotor position estimation algorithm for the SRM, based on the magnetizing curves only at aligned and unaligned rotor positions. Through basic test method, the complete SRM magenetizing characterization is first constructed, and then used to estimate the rotor position. And also, the optimized phase is selected by phase selector. To demonstrate the promise of this approach. the proposed rotor position estimation algorithm is simulated for variable speed range.

  • PDF

Indirect Detection of Rotor Position of Switched Reluctance Motor Based on Flux Linkage Analytic Model

  • Zhou, Yongqin;Hu, Bo;Wang, Hang;Jin, Ningzhi;Zhou, Meilan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.829-837
    • /
    • 2018
  • In this paper, a flux linkage model based on four magnetization curves fitting is proposed for three-phase 12/8 switched reluctance motor (SRM), with the analysis of the basic principle of flux detection method and function analysis method. In the model, the single value function mapping relationship between position angle and flux is established, which can achieve a direct estimation of rotor position. The realization scheme of SRM indirect position detection system is presented. It is proved by simulation and experiment that the proposed scheme is suitable for rotor position detection of SRM, and has high accuracy of position estimation.

A Rotor Position Estimation of Brushless DC Motors using Neutral Voltage Compensation Method (중성점전압보상 방식을 이용한 브러시리스직류전동기의 회전자위치 추정)

  • Song Joong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.491-497
    • /
    • 2004
  • This paper presents a new rotor position estimation method for brushless DC motors. It is clear that the estimation error of the rotor position provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral voltage-based estimation method that is structured in the form of a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and controllable measure, which can be dealt with for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be implemented easily by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

Analysis of Estimation Errors in Rotor Position for a Sensorless Control System Using a PMSM

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.748-757
    • /
    • 2012
  • In a sensorless control system with a Permanent Magnet Synchronous Motor (PMSM), the angular position of the rotor flux can be estimated by a voltage equation. However, the estimated angle may be inaccurate due to various causes. In this paper, it was comprehensively analyzed how various causes affect the angle error. As a result of the analysis, an error equation intuitively describing these relationships was derived. The parameter errors of a PMSM and the non-ideal properties of the driving system were identified as error-causing factors. To demonstrate the validity of the error equation, PMSMs were tested at various operating points. The variations in angle errors could be well explained with the error equation.

Sensorless Estimation of Single-Phase Hybrid SRM using Back-EMF

  • Tang, Ying;He, Yingjie;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.198-206
    • /
    • 2017
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The back-EMF generated by the permanent magnet (PM) field whose performance is motor parameter independent is adopted as an index to achieve the sensorless control. The differential value of back-EMF is calculated by hardware and processed by DSP to capture a fixed rotor position four times for every mechanical cycle. In addition, to accomplish the normal starting of HSRM, the determination method of the turn-off time position at the first electrical cycle is also proposed. In this way, a sensorless operation scheme with adjustable turn on/off angle can be achieved without substantial computation. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed position estimation scheme.

Sensorless speed control of a Switched Reluctance Motor using Fuzzy position estimation algorithm (퍼지회전자 위치평가 알고리즘을 이용한 SRM센서리스 속도제어에 관한 연구)

  • 최재동;김갑동;안재황;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.343-351
    • /
    • 2000
  • This paper introduces a new rotor position estimation algorithm for the Switched Reluctance Motor, based on the magnetizing curves only at aligned and unaligned rotor positions. The flux linkage is calculated by measured data from phase voltage and phase current, and calculated data are used as the input of magnetizing profiles for rotor position detection. The fuzzy flux observer using novel knowledge-based fuzzy controller are presented to achieve sensorless control of the SRM. The method for selecting optimal angle is proposed for the rotor position detection. The robustness of the proposed algorithm is proved through the comparison of the simulation and experimental results.

  • PDF

Real-time Stability Assessment and Energy Margin Estimation using Fuzzy (퍼지를 이용한 실시간 안정도 판별과 에너지 마진의 추정)

  • Choi, Won-Chan;Kim, Soo-Nam;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1239-1241
    • /
    • 1999
  • In this paper, we propose real time transient stability assessment and energy margin estimation using fuzzy approximate reasoning. The proposed method used rotor angle, kinetic energy and acceleration power of generators at clearing time as fuzzy input. In order to calculate energy margin in transient energy function (TEF), we obtained controlling unstable equilibrium point (UEP) using mode of disturbance procedure (MOD). The proposed algorithm is tested on 4-machine, 6-bus, 7-line power system to prove of effectiveness.

  • PDF

A Study on Vector Control of Induction Motor Based on Speed Estimation (유도전동기의 속도 추정 벡터제어에 관한 연구)

  • 설승기;권봉현;강준구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.928-933
    • /
    • 1990
  • In the vector controlled induction machine drives, mechanical speed sensors such as shaft encoder and resolver have been used. However, the mechanical speed sensors present some problems and restrict the wide applications of high performance AC drives. This paper describes the vector strategy with the speed estimation algorithm in which motor slip frequency is calculated. Also, the angle deviation of the rotor flux vector is calculated and instantaneously compensated to keep the q axis flux zero in the rotational reference frame.

  • PDF

A Novel Flux Calculator for the Field Oriented Control of an Induction Motor without Speed Sensors (속도센서 없는 유도전동기 자속기준제어를 위한 새로운 자속 연산기)

  • 김경서
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 1998
  • This paper describes a novel flux calculator for the estimation of real rotor flux angle which is indispensable to the field oriented control of induction motors. A pure integrator is used to estimate the real rotor flux precisely from voltage and current information. The proposed flux calculator adopts the new drift compensation method to overcome the drift problem of pure integrator. The motor speed is calculated using estimated flux angle and estimated slip frequency. The performance of this approach is verified through the experiment. The experimental results shows stable operation of proposed system even below 1/100 of rated speed.