• Title/Summary/Keyword: Rotor Unbalance

Search Result 221, Processing Time 0.03 seconds

Rotordynamic Design of the Micro Gas Turbine Supported by Air Foil Bearings (공기포일베어링에 지지된 마이크로가스터빈의 회전체동역학적 설계)

  • Kim, Young-Cheol;Han, Jung-Wan;Kim, Kyung-Woong;Kim, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.662-667
    • /
    • 2003
  • This paper presents a performance analysis of the 1st generation bump foil journal bearings for the micro gas turbine TG75. Static performances such as load capacity and attitude angle are estimated by using soft elasto-hydrodynamic analysis technique, and dynamic performances such as stiffness and damping coefficients are estimated by perturbation method. Rotordynamic analysis for TG75 is performed by using the bearing analysis results. TG75 rotor has 2 horizontal and vertical directional natural modes due to the bearing stiffness characteristics. TG75 rotor will be stably operated between the 1st bending mode at 33000cpm and the 2nd bending mode at 85500cpm. Unbalance response analysis results satisfy the API vibration criteria.

  • PDF

Experimental Study on the Static Balancing Method of an Unbalanced Rigid Rotor (불평형 회전체의 정적평형 방법에 대한 실험적 연구)

  • Chang, Ho-Gyeong;Kim, Sung-Kyu;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 1991
  • The presence of an unbalanced mass is originated the common source of vibration in machines with rotating rotor. In this study, the unbalanced rigid rotor mounted on an overhang shaft is balanced using the static balancing procedure, and the compensation mass is estimated by the phase angle method and four run method. Also, the reduction of vibration level before and after balancing is examined. In the experimental results, it is shown that the vibration due to the unbalanced mass is decreased by eliminating the effect of the unbalance. Above all, the four run method is proved more effective on the ability of vibration reduction, in small unbalanced mass, the phase angle method.

  • PDF

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Diagnosis Method and Characteristic Analysis of Shorted Turns on Generator Rotor using Flux Sensorless (자속센서리스 회전자 층간단락 진단기법 및 특성해석)

  • Kim Sun-Ja;Jeon Ywun-Seok;Lee Seung-Hak;Jeong Byung-Hwan;Lee Myung-Un;Choe Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.257-263
    • /
    • 2005
  • Short-circuit rotor windings on a generator causes unstable oscillation of unbalance of flux, asymmetrical heat. In order to prevent serious accidents of short-circuit rotor windings, it is important to study the shorted-turn diagnosis method for rotor windings of the generator. To improve the defects of the diagnosis with sensors, the new sensorless method for rotor shorted-turn diagnosis is proposed, which is to measure the electrical values of the voltage and current at the generator and then to detect if the shorted-turned phenomena would occurred. For the feasibility of the suggested method the theoretical results are shown in the aspects of the air-gap flux density, the flux leakage, the generated output voltage and the shorted field current through the digital simulation. Also the possibility of decision for the suggested sensorless method could be shown in this paper.

Rotordynamic Analyses of a Composite Roller for Large LCD Panel Manufacturing (대형 LCD 패널 제조용 복합재 롤러의 회전체 동역학 해석)

  • Park, Hyo-Keun;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Young-Hwan;Yang, Seung-Un;Kim, Dong-Hyun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.8-15
    • /
    • 2006
  • In this study, computational rotor dynamic analyses of a composite roller used for large LCD panel manufacturing process have been conducted. The present computational method is based on the general finite element method with rotating gyroscopic effects of rotor systems. General purpose commercial finite element code, SAMCEF which has special rotordynamics analysis module is applied. For the purpose of numerical verification, comparison study for a benchmark dual rotor model with support bearings is also presented. Detailed finite element models for composite roller with optimized lamination angles are constructed and analyzed considering gravity effect in order to investigate vibration characteristics in actual operation environment. As results of the present study, rotor stability diagrams and mass unbalance responses are presented for different rotating conditions.

Operation Analysis of Induction Motor under the Combination of Linear & Non-linear Loads (선형 및 비선형 부하 혼합 운전시 유도전동기의 동작 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Kim, Jun-Ho;Lee, Jong-Han;Jeong, Jong-Ho;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.65-67
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Motors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

Critical Speed Analysis of the Liquid Rocket Turbopump (액체로켓 터보펌프의 임계 속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.92-99
    • /
    • 2005
  • Numerical analyses of critical speed and mass unbalance response are performed for a 30 ton thrust turbopump. The stiffness and damping of ball bearings and non-contact seals are quantified under aerodynamic and hydrodynamic loads induced by a fuel pump and turbine. Critical speed margin and tip displacements of the rotating parts are evaluated using a three-dimensional finite element method. The results are used to ensure the soundness of the rotordynamic design using an one-dimensional transfer matrix method. A further study shows that sufficient resonance margin may be assured via controlling the stiffness of the rotor support by employing an additional elastic ring to the bearing support.

인공위성 반작용휠의 미소진동 측정 및 분석

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2004
  • In this paper, we briefly introduce the micro-vibration test bench of KARI and the test and analysis method of RWA(Reaction Wheel Assembly) micro-vibration. The micro-vibration of RWA is measured on a KISTLER dynamic plate which can measure the time signal of 6 DOF simultaneously up to 400Hz. Measured data are extensively evaluated with respect to the wheel spin rate to identify the complicate wheel dynamic characteristics, and the static/dynamic unbalances are estimated from the extracted first harmonic component as a part of evaluation process. The estimated static and dynamic unbalances. 0.79gcm and 17.4gcm² respectively. The structural resonance mode and two rocking modes observed as a results of its frequency analysis. Several higher order harmonic components observed, which come from its rotor shape as well as the wheel bearing characteristics.

  • PDF

A Study on Balancing of High-speed Spindle of CNC Automatic Lathe (CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구)

  • Kim, Tae-Jong;Koo, Ja-Ham;Lee, Shi-Bok;Kim, Moon-Saeng
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.