• 제목/요약/키워드: Rotor Shaft Diameter

검색결과 23건 처리시간 0.022초

회전샤프트의 위험속도에 관한 진동특성 연구 (A Study on the Vibration Characteristics of Critical Speed for Rotor Shaft)

  • 손충렬;이강수;류영현
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.961-971
    • /
    • 2008
  • In the design of a rotor shaft, care should be taken to minimize vibration by taking into account the sources of vibration. In addition, the intensity critical speed, stability, and other related aspects of the system must be considered. especially when it is operated at a critical speed, it is important to address issues related to vibration, as an increase in the whirling response of the rotor shaft can cause damage to the shaft, destruction of the rotor parts, and detrimental abrasions on the bearings. In this thesis, the vibration characteristics of a rotor shaft are investigated through the use of the finite element method. Variations of the diameters and lengths were used to determine the effect of a rotor shaft using Beam No.188(3D linear strain beam) in ANSYS version 11.0 as a universal interpretation program for finite elements. Special care was taken to prevent excessive vibration, which can result from resonance at the initial stage, in the formulation of a dynamic design for a rotor shaft through calculations while changing the diameters and the lengths of the shaft. Moreover, the dynamic characteristics of the critical speed, total mass, D/L(diameter to length) ratio, and natural frequency were verified. Furthermore, the rotor shaft applied by bearing element was calculated and compared by using Combi No. 214(2-D spring-damper bearing).

열박음 로터에서 간섭량의 강성 효과 (Stiffness effect of fitting interference for a shrunk rotor)

  • 김영춘;박희주;박철현;김경웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-324
    • /
    • 2003
  • In general industrial rotating machinery is operated under 3,600 rpm as rotating speed and designed to have critical speed that is above operating speed. So, there was no problem to operate rotating machine under critical speed. But nowadays, they should be operated more than the frist critical speed as usual with the trend of high speed, large scale and hish precision in industries. In case of the large rotor assembly as the trend of large scale, using fitting method of disk or cylinder on shaft is rising for the convenience of assembly and cutting down of manufacturing cost. The shrink fitting is used to assemble lamination part on shaft for manufacturing of rotor of motor or generator in many cases and also is widely used for other machinery. In rotating system, which is compose of rotor and bearing, the critical speed is determined from inertia and stiffness for the rotor and bearings. In case of fitting assembly, analysis and design of the rotor is not easy because the rotor stiffness is determined depend on a lot of factors such as shaft material/dimension, disk material/dimension and assembled interference etc. Therefore designer who makes a plan for hish-speed rotating machine should design that the critical speed is located out of operating range, as dangerous factors exist in it. In order to appropriate design, an accurate estimation of stiffness and damping is very important. The stiffness variation depend on fitting interference is a factor that changes critical speed and if it's possible to estimate it, that Is very useful to design rotor-bearing system. In this paper, the natural frequency variation of the rotor depends on fitting interference between basic shaft and cylinder is examined by experimentation. From the result, their correlation is evaluated quantitatively using numerical analysis that is introduced equivalent diameter end the calculation criteria is presented for designer who design fitting assembly to apply with ease for determination of appropriate interference.

  • PDF

볼 베어링과 스퀴즈 필름 댐퍼로 지지되는 차량용 터보차저의 회전체동역학 해석: 스퀴즈 필름 댐퍼 설계 인자와 회전체 불균형 질량의 영향 (Rotordynamic Analysis of Automotive Turbochargers Supported on Ball Bearings and Squeeze Film Dampers in Series: Effect of Squeeze Film Damper Design Parameters and Rotor Imbalances)

  • 김규만;류근
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Modern high-performance automotive turbochargers (TCs) implement ceramic hybrid angular contact ball bearings in series with squeeze film dampers (SFDs) to enhance transient responses, thereby reducing the overall emission levels. The current study predicts the rotordynamic responses of the commercial automotive TCs (compressor wheel diameter = ~53 mm, turbine wheel diameter = ~43 mm, and shaft diameter at the bearing locations = ~7 mm) supported on ball bearings and SFDs for various design parameters of SFDs, including radial clearance, axial length, lubricant viscosity, and rotor imbalance conditions (i.e., amplitudes and phase angles) while increasing rotor speed up to 150 krpm. This study validates the predictive rotor finite element model against measurements of mass, polar and transverse moments of inertia, and free-free mode natural frequencies and mode shapes. A nonlinear rotordynamic model integrates nonlinear force coefficients of SFDs to calculate the transient responses of the TC rotor-bearing system. The predicted results show that SFD radial clearances, as well as phase angles of rotor imbalances, have the paramount effect on the dynamic responses of TC shaft motions.

조합 유전 알고리듬을 이용한 증기 터빈 회전체-베어링 시스템의 최적설계 (Optimal Design for Steam-turbine Rotor-bearing System Using Combined Genetic Algorithm)

  • 김영찬;최성필;양보석
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.380-388
    • /
    • 2002
  • This paper describes the optimum design for low-pressure steam turbine rotor of 1,000 MW nuclear power plant by using a combined genetic algorithm, which uses both a genetic algorithm and a local concentrate search algorithm (e.g. simplex method). This algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The objective is to minimize the resonance response (Q factor) and total weight of the shaft, and to separate the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables. The results show that the proposed algorithm can improve the Q factor and reduce the weight of the shaft and the 1st critical speed.

Multi-Objective Optimization of Rotor-Bearing System with dynamic Constraints Using IGA

  • Choi, Byung-Gun;Yang, Bo-Suk;Jun, Yeo-Dong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.403-410
    • /
    • 1998
  • An immune system has powerful abilities such as memory recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this paper, the combined optimization algorithm (Immune-Genetic Algorithm: IGA) is proposed for multi-optimization problems by introduction the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The new combined algorithm is applied to minimize the total weight of the rotor shaft and the transmitted forces at the bearings in order to demonstrate the merit of the combined algorithm. The inner diameter of the shaft and the bearing stiffness are chosen as the design variables. the results show that the combined algorithm can reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic constraints.

  • PDF

무선센서 시스템 응용을 위한 선박 추진 축계용 에너지 하베스터 (Energy Harvester on a Ship Propulsion Shaft for Wireless Sensor System Applications)

  • 호앙 반 아이;이영철
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.96-101
    • /
    • 2023
  • 본 연구에서는, 회전하는 축계에서 무선센서 시스템 응용을 위해 에너지 하베스터(EH, energy harvester)를 제안되었다. 무선 센서 시스템(WSS)에 지속적으로 전원을 공급하기 위해 EH를 직경 20 cm의 샤프트에 설계 및 구현되었다. 로터에는 샤프트에 부착된 7개의 U자형 코어에 코일이 쌍으로 감겨 있다. 고정자는 8개의 I-코어에 부착된 8쌍의 자석으로 구성되며 외부 고정 장치에 고정되었다. EH의 발전 전력은 회전자와 고정자 사이의 공기 공극, 코일의 권수, 그리고 축의 회전속도에 따라 조사되었다. 제작된 EH는 300 rpm 및 3 mm 공기 공극에서 최대 2.87 W의 전력을 생산하였다.

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System

  • Kim, Byung-Ok;Choi, Bum-Seog;Kim, Jeong-Man;Cho, Han-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1002-1006
    • /
    • 2015
  • In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.

면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계 (Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm)

  • 최병근;양보석
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

깃 형상이 터보기계의 동특성에 미치는 영향 (Effects of Blade Shape on the Dynamics of Turbo-machinery)

  • 전상복
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.477-484
    • /
    • 1998
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the prewist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and prewist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

탄성 축-익 붙임 원판 계의 진동에 있어서 엇각 및 비틀림각의 영향 (Effects of Stagger and Pretwist Angles on the Vibration of Flexible Shaft-Bladed Disk Systems)

  • 전상복;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.101-109
    • /
    • 1997
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the pretwist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and pretwist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF