• Title/Summary/Keyword: Rotor Instability

Search Result 94, Processing Time 0.022 seconds

Ground Resonance Instabilities Analysis of a Bearingless Helicopter Main Rotor (무베어링 헬리콥터 로터의 지상공진 불안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.352-357
    • /
    • 2012
  • The ground resonance instability of a helicopter with bearingless main rotor hub were investigated. The ground resonance instability is caused by an interaction between the blade lag motion and hub inplane motion. This instability occurs when the helicopter is on the ground and is important for soft-inplane rotors where the rotating lag mode frequency is less than the rotor rotational speed. For the analysis, the bearingless rotor was composed of blades, flexbeam, torque tube, damper, shear restrainer, and pitch links. The fuselage was modeled as a mass-damper-spring system having natural frequencies in roll and pitch motions. The rotor-fuselage coupling equations are derived in non-rotating frame to consider the rotor and fuselage equations in the same frame. The ground resonance instabilities for three cases where are without lead-lag damper and fuselage damping, with lead-lag damper and without fuselage damping, and finally with lead-lag damper and fuselage damping. There is no ground resonance instability in the only rotor-fuselage configuration with lead-lag damper and fuselage damping.

Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향)

  • Park, Moon Sung;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

Moment Whirl due to Leakage Flow in the Back Shroud Clearance of a Rotor

  • Tsujimoto, Yoshinobu;Ma, Zhenyue;Song, Bing-Wei;Horiguchi, Hironori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • Recent studies on the moment whirl due to leakage flow in the back shroud clearance of hydro-turbine runners or centrifugal pump impellers are summarized. First, destabilizing effect of leakage flow is discussed for lateral vibrations using simplified models. Then it is extended to the case of whirling motion of an overhung rotor and the criterion for the instability is obtained. The fluid moment caused by a leakage clearance flow between a rotating disk and a stationary casing was obtained by model tests under whirling and precession motion of the disk. It is shown that the whirl moment always destabilizes the whirl motion of the overhung rotor while the precession moment destabilizes the precession only when the precession speed is less than half the rotor speed. Then vibration analyses considering both whirl and precession are made by using the hydrodynamic moments determined by the model tests. For larger overhung rotors, the whirl moment is more important and cause whirl instability at all rotor speed. On the other hand, for smaller overhung rotors, the precession moment is more important and cancels the destabilizing effect of the whirl moment.

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

A Study on Dynamic Characteristics of Synchronously Controlled Hydrodynamic Journal Bearing (동기 제어되는 동압 베어링의 동특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.311-315
    • /
    • 2001
  • In this paper synchronous whirl of bearing is employed as control algorithm of actively controlled hydrodynamic journal bearing to suppress the whirl instability and unbalance response of a rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability and unbalance responses of a rotor-bearing system are investigated for various control gain and phase difference between the bearing and journal motion. It is shown that the unbalance response of a rotor-bearing system can be greatly improved by synchronous whirl of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, at given operating condition. It is also found that the speed at onset of instability can be greatly increased by synchronous whirl of the bearing.

  • PDF

The Generic Analysis Method for Core Flow Instability

  • Jun, Byung-Soon;Park, Eung-Jun;Park, Jong-Ryool
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.335-341
    • /
    • 1997
  • The generic analysis method for core flow instability is suggested to confirm that the core flow instability would not occur on PWR conditions. For the confirmation, the stability criteria of each fuel type are provided. Instability investigations in various accident conditions prove that the locked rotor accident is the most limiting case to instability. Parametric Effects are surveyed and in good agreement with available studies. The effects of heat flux distribution become negligible as the subcooling number is decreased. The power margin to instability is calculated quantitatively in various accident conditions.

  • PDF

Rotordynamci Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Kim, Kwang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.191-198
    • /
    • 2002
  • Oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of the conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compression with two impellers at operating speed, 39,000rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rate. Correlation between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly developed in aerodynamic unsteady region. Thus, these results show that it is beneficial to design high speed rotating turbomachinery considering coupling effect between aerodynamic instability and rotordynamic force.

  • PDF

A Study on the Performance of Slot Restrictor Bearing with a Variation in Circumferential Direction (원주방향 변화를 갖는 슬롯 레스트릭터 베어링의 성능 연구)

  • 박정구;김경웅
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • A slot restrictor air journal bearing has high load capacity and high stiffness. The stability characteristics of the slot restrictor air journal bearing are studied theoretically and experimentally to forecast and to prevent the whirl instability. As for the high speed rotating machinery, the instability called'whirl'occurs when the rotor rotates at a speed more than twice the resonant speed. Once the whirl occurs, rubbing contact between the journal and the bearing occurs mostly and the bearing-rotor system is destroyed ultimately. Therefore, the forecasting and prevention of the occurrence of whirl instability is a very important subject especially to develop highly efficient high speed rotating machinery. The bearing with the slot restrictor that varies about circumferential direction is used for the purpose of the prevention of whirl instability.

Rotordynamic Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Kim, Kwang-Ho;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.62-69
    • /
    • 2003
  • An oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of a conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compressions with two impellers at a operating speed of 39,000 rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rates. Correlations between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly observed in an aerodynamic unsteady region. Thus, these results show that it is beneficial to design high-speed rotating turbomachinery by considering coupling effect between aerodynamic instability and rotordynamic force.

A study on performance of slot restrictor bearing with a variation in circumferencial direction (원주방향 변화를 갖는 슬롯 레스트릭터 베어링의 성능 연구)

  • 박정구;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.350-357
    • /
    • 1998
  • Slot restrictor air journal bearing has high load capacitance and high stiffness. Stability characteristics of slot restrictor air journal bearing are studied theoretically to forecast and to prevent the whirl instability. As for the high speed rotating machinery, the instability called 'whirl' occurs when the rotor rotates at a speed more than twice the resonant speed. Once the whirl occurs, rubbing contact between the journal and the bearing occurs mostly and the bearing-rotor system is destroyed ultimately. Therefore, the forecasting and prevention of the occurence of whirl instability is a very important subject especially to develop highly efficient high speed machinery. The bearing with the slot restrictor that varies about circumferencial direction is used for the purpose of the prevention of whirl instability.

  • PDF