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Abstract 

Recent studies on the moment whirl due to leakage flow in the back shroud clearance of hydro-turbine runners or 
centrifugal pump impellers are summarized. First, destabilizing effect of leakage flow is discussed for lateral vibrations 
using simplified models. Then it is extended to the case of whirling motion of an overhung rotor and the criterion for the 
instability is obtained. The fluid moment caused by a leakage clearance flow between a rotating disk and a stationary 
casing was obtained by model tests under whirling and precession motion of the disk. It is shown that the whirl moment 
always destabilizes the whirl motion of the overhung rotor while the precession moment destabilizes the precession only 
when the precession speed is less than half the rotor speed. Then vibration analyses considering both whirl and 
precession are made by using the hydrodynamic moments determined by the model tests. For larger overhung rotors, the 
whirl moment is more important and cause whirl instability at all rotor speed. On the other hand, for smaller overhung 
rotors, the precession moment is more important and cancels the destabilizing effect of the whirl moment. 
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1. Introduction 
Severe flexural vibration of the rotor shaft of a Francis turbine generator shown in Fig.1 was experienced in its test operation 

and reported by Tomita and Kawamura [1]. The mechanism of vibration is explained as follows [2]. Figure 2 shows the leakage 
flow model. As long as the runner remains in the center of the casing, the leak flow is uniform around the runner. Once the runner 
deviates from the center of the casing by 1y , the uniformity will be broken and the resulting change of the leak flow, represented 
by q  in Fig.2 will occur in the back chamber. When the runner vibrates, the variational flow must change its direction 
accordingly, thus causing the variation of the pressure in the chamber. As the first step of understanding, the rotor is modeled by a 
plate with an entrance orifice and the leakage flow is modeled by a one-dimensional flow as shown in Fig.3. We assume that the 
leakage flow rate q  is proportional to the leakage flow velocity U  in the entrance orifice and the width B  and the height y , 
i.e., q BU y= ⋅ . The pressure distribution caused by the acceleration of the leakage flow rate is given by 

( ) ( ) / ( )p x L x BH qρ= ⋅ − ⋅ & . Then the equation of motion of the plate can be expressed by 
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This equation shows clearly that the pressure distribution caused by the acceleration of the leakage flow causes negative damping 
for the vibration of the plate. 

Then, a lateral vibration model of an overhung rotor is proposed as shown in Fig.4. The upper end is rigidly supported and a 
bearing is placed at 2y . The lateral force on the rotor is represented by 1h fP A y= & and the moment on the rotor by 1h mM A y= & . 
Here, the influence factors ,i jξ  giving the lateral displacement at the node i  due to the force at j , and ,i jη  giving the lateral 
displacement at the node i  due to the moment at j  are introduced. Then, the equation of motion can be expressed by 
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From these equations, it was shown that the lateral vibration grows when 
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This result shows that fluid moment on the rotor can cause lateral vibration through structural coupling. 
   Thus, the possible mechanism of the vibration has been clearly shown by the simplified models. However, rotors generally 
exhibit whirling and precession motion and it is not clear under what conditions the self excited vibration occurs. Also the leakage 
flow in real geometry is not so simple as assumed in Fig.3. Simplified stability analysis is presented in section 2 to obtain the 
criterion of the whirl instability caused by whirl moments. In section 3, fluid moments due to whirl and precession are determined 
by model tests. Then, the vibration analysis under more general conditions with whirl and precession is described in section 4 
using the fluid force moments determined in section 3. 

2. Excitation of Whirl by Moment Through Structural Coupling 
It is well known that rotor whirl can be caused by rotordynamic forces. However, it is not known under what conditions 

rotordynamic moment can cause whirl instabilities. We consider an overhung rotor rotating with an angular velocity ω  and 
executing an whirling motion with an angular velocity Ω  with a whirl radius ε  as shown in Fig.5(b) [3]. The fluid force F

Fig. 1 Flexural vibration of a Francis turbine 

Fig. 4 Lateral vibration model Fig. 3 One-dimensional flow model 

Fig. 2 Leakage flow model 
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and moment M  are represented as follows 
 θθ εε iti fefeF == +Ω )(||         (4) 
 ( )i t iM me meϕ ϕε εΩ += =        (5) 
The displacement of the shaft ε  caused by the force *F  and the moment *M  applied on the shaft by the rotor can be 
represented as follows, by using the stiffness coefficients k and km of the shaft. 
 * */ / mF k iM kε = +         (6) 
If we consider the inertia am ε− &&  and the damping force on the rotor cε− & , the momentum equation of the rotor for the lateral 
vibration can be given by 
 *

aF F m cε ε= − −&& &         (7) 
If we assume that the angular displacement of the rotor is so small that the inertia moment can be neglected, we can write 
 *M M=          (8) 
If we put equations (6) and (8) into (7), we obtain 
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where, 
 cos , sin , cos , sinn t n tf f f f m m m mθ θ ϕ ϕ= = = = , 
 e en etf f if= + , ( / )en n m tf f k k m= − , ( / )et t m nf f k k m= +  
Then, Eq.(9) can be rewritten as 
 *( ) 0i

a em c k f e θε ε ε+ + − =&& &        (10) 
If we put teλε =  in Eq.(10), and assume that c  and ef  are sufficiently small, we obtain 
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where *cosR ek k f θ= −  and *sinI ek f θ= − . Equation (11) shows that the whirl frequency Ω  is given by 
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The forward whirl with /R R ak mΩ =  grows when 
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This means that the whirl radius ε  grows when the equivalent tangential force { }( / )et t m nf f k k mε ε= +  becomes larger 
than the damping force Rc ε Ω . Equation (11) also shows that the backward whirl with /R R ak mΩ = −  occurs 
when et Rf cε ε< − Ω . The contribution of the tangential force tf  was shown by Ohashi et al. [4]. Present result shows the whirl 
instability can occur when the normal moment nm  has the same sign as the whirl angular velocity Ω . 

Fig. 5 Force and moment acting on the rotor in whirling motion 

k,km 
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3. Rotordynamic Fluid Force Moment 
As shown in Fig.6, the vibration of an over-hung rotor shown in (a) can be decomposed to the whirling motion shown in (b) 

and the precession motion shown in (c). As discussed in the last section, the hydrodynamic moment caused by the whirl motion is 
important in the moment whirl. However, the moment caused by the precession motion is also needed for general vibration 
analysis. So, both whirl moment and precession moment are measured. Figure 7 shows the experimental facility. The backshroud 
is modeled by a disk set close to the casing. Forced whirl/precession motion was given by a special bearing system supporting the 
shaft. The leakage flow was given by an external pump. 

3.1 Whirling Moment 

Figure 8 shows the whirl moment normalized by the 
reference moment 4

0 2/ ( )l TM C v Rω ρ ω ε π= ⋅  where 
2C =4mm is the axial clearance, lv  is the leakage flow 

velocity in the radial clearance 1C =1mm and 
TR =149.5mm is the radius of the disk [3]. Uj is the 

tangential velocity at the swirl generator and T TU R ω=  is 
the disk tip speed. The moment was measured by the force 
balance attached to the shaft and also evaluated by the 
unsteady pressure distribution on the casing. The results 
agree reasonably. The moment was evaluated also 
numerically using a bulk flow model [5] in which the flow 
in the clearance is averaged over the clearance and the effect 
of wall stress is taken into account. Although significant 
difference is found, the tendency can be reproduced by the 
model. What is most important is that the sign on the normal  

Fig. 6 Coordinate system 

Fig. 7 Schematic of experimental facility 

Fig. 8 Fluid force moments obtained by the force sensor, the steady pressure, and the computation 
in the case of whirling motion at vl/UT=0.170 and UJ/UT =0 for C2=4mm, 
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moment nM  is the same as that of the whirl speed ratio /ωΩ , at almost all /ωΩ . This means that the whirl moment is always 
destabilizing the whirling motion. 

Figures 9-12 show the pressure and disturbance velocity distributions, viewed from upper side in Fig.7. The normal direction 
(n) is displayed to the right, and the radial clearance is the smallest in this direction. At the periphery of the disk, the disturbance 
velocity vector is outward on the right hand side where the seal clearance is smaller. The experimental pressure distribution shown 
in (a) is qualitatively similar to the numerical results in (b). Generally, the pressure minimum occurs on the right hand side, where 
the seal clearance is smaller, caused by the larger resistance there. However, the location of the pressure minimum is tilted upward 
at / 0ωΩ > and downward at / 0ωΩ < . At / 0ωΩ > , the leakage flow is decreasing on the upper half and decreasing on the 
lower half at / 0ωΩ < . Then the pressure is decreased in the upper half at / 0ωΩ >  and in the lower half at / 0ωΩ < , due to 
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the inertia effects. Since the normal moment is caused by the asymmetry of 
the pressure distribution across the horizontal axis, we can conclude the 
destabilizing normal moment is caused by the inertia effects of the leakage 
flow. This agrees with the result of simplified one dimensional model 
shown in Fig.3. 

3.2 Precession Moment 

Normal and tangential moment under precession motion is defined in 
Fig.13 and shown in Fig.14 [6]. The reference fluid moment is defined by 

5 2
0 2( / )T TM R R Cρ ω α=  where 30.48deg 8.37 10 radα −= = ×  is the tilt 

angle of the precession motion as shown in Fig.13. The axial clearance is 
the smallest in the normal direction but the radial seal clearance is the same 
at all circumferential locations. The stability analysis of the precession 
motion similar to the one described in section 2 for the whirling motion 

Fig. 13 Definition of the rotordynamic fluid 
force moment in precession motion 

Fig. 14 Fluid force moment at various flow rates in precession motion for C2=4mm and UJ/UT=0 
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shows that the precession is promoted when the normal moment has the same sign as the precession speed ratio /ωΩ . Figure 
14(a) shows that the precession is destabilized in the region 0 / 0.5ω< Ω ≤ . 

Figures 15-18 show the pressure and the disturbance velocity of the clearance flow. In these figures, the axial clearance is the 
smallest on the right and the directions of disk rotation and precession are shown in the figure. Higher pressure region is in the 
upper part for / 0.5ωΩ > and in the lower part for / 0.5ωΩ < . This is caused by the relative circumferential flow with the 
angular velocity / 2ω −Ω  passing through the circumferential location with smaller axial clearance at n-direction. The radial 
velocity disturbance near the outer radius is negative on the right hand side where the axial clearance is smaller, at all /ωΩ . This 

Fig. 19 Comparison of fluid force moments obtained by the force sensor, the unsteady pressure, and the computation 
between the conditions of precession with and without rotation at vl/UT=0.170 and UJ/UT=0 for C2=4mm 
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is because the leakage velocity is increased in the region with smaller axial clearance since the leakage flow rate is kept nearly 
constant by larger resistance of smaller radial clearance 1C =1mm, which is kept nearly constant under precession. Near the inner 
radius, upward velocity is observed when / 0.5ωΩ <  and the magnitude becomes larger when 1/ 2 /ω−Ω  becomes larger. 
On the other hand, downward velocity is observed at / 1.2 0.5ωΩ = > . The inward velocity at the inner radius occurs when the 
relative circumferential flow with the angular velocity / 2ω −Ω  passes through the region where the clearance decreases, so that 
the continuity equation is satisfied. 

As discussed above, the tangential flow caused by the disk rotation plays an important role in producing the precession 
moment. In order to show the effects more clearly, tests were carried out without the disc rotation. Figure 19 compares the 
moment with and without the disk rotation. Comparison of the results from force measurement and the pressure measurement, as 
well as from numerical calculation is shown. Without the rotation, the tangential moment is decreased by a constant amount over 
all /ωΩ  and the destabilizing region in 0 / 0.5ω< Ω ≤  disappears. This clearly shows the importance of the tangential flow 
caused by the disk friction. Without disk rotation, both normal and tangential components are nearly symmetrical with respect to 

/ 0ωΩ = . 

4. Vibration Analysis Including both Whirl and Precession Motion 
In the simplified stability analysis in section 2, the effects of precession are neglected to highlight the destabilization of 

whirling motion by the whirl moment. A more complete analysis using a lumped parameter model is carried out in this section 
taking account of both whirl and precession motion and associated fluid moment evaluated in section 3. We consider an overhung 
shaft simply as an stiffness element to the linear displacement j teε ε Ω= %  and the angular displacement j tA j eα Ω= − % . Then, the 
momentum equations can be represented by 
 11 12d fM K jK A Fε ε+ − =&&        (14) 

 22 21d f GI A K A jK M Mε+ + = +&&       (15) 
where, fF  and fM  are fluid force and moment, G pM j I Aω= &  is the gyroscopic moment [7]. dM  and dI  are the mass and 
the moment of inertia of the disk, respectively. ijK  are stiffness coefficients for lateral and angular displacements. The values of 

ijK  are determined by assuming an overhung rotor. The fluid force and the gyroscopic moment are neglected here for simplicity. 
The fluid force moment components determined in section 3 are fitted with parabolic curves in terms of the speed ratio /ωΩ . 

Fig. 20 The effects of fluid force moments on the complex frequency of the rotor-shaft system at vl/UT=0.170, UJ/UT=0 
for L/DT=3.344, C2=4mm,  
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Then, the moment can be represented by components proportional to ε , ε& , ε&&  and A , A& , A&& . By using this expression, 
Eqs.(14) and (15) can be represented by a system of homogeneous linear equations in terms of ε%  and α% . By putting the 
determinant of the coefficient matrix to be zero, a fourth order characteristic equation in terms of the complex frequency 

R IjΩ = Ω + Ω  is obtained. Numerical calculations were made for the experimental facility assuming different overhung length 
L . 
   Figure 20 shows the complex frequencies R IjΩ = Ω + Ω  for the case of overhung length to disk diameter ratio 

/ 3.344TL D = .  1F  and 2F  shows the first and second order forward modes with 0RΩ > , 1B  and 2B  the first and second 
order backward modes with 0RΩ < . The imaginary part IΩ  shows the damping rate and the amplitude grows when 0IΩ < . 
The disk rotational speed ω  and the complex frequency components RΩ  and IΩ  are normalized by the natural frequency 

11(1/ 2)n dK Mω =  of lateral vibration. If we consider only the whirl moment, as shown in Fig.20(b), the first order forward 
and backward modes ( 1F  and 1B ) are amplified at all rotational speed. This agrees with the result shown in Fig.8 that the whirl 
moment is always destabilizing. If we consider only the precession moment, as shown in Fig.20(c), 1F  becomes destabilizing in 
the region with / 2nω ω > . This region corresponds to / 0.5R ωΩ <  where the normal precession moment becomes positive in 
Fig.14. The results with both whirl and precession moments shown in Fig.20(d) is similar to the case with only whirl moment 
shown in Fig.20(b). This shows that the whirl moment is more important than the precession moment for the case with 

/ 3.344TL D =  and that the simplified stability criteria obtained in section 3 can be applied. 
   Figure 21 shows the results for the case of extremely small overhung rotor with / 0.033TL D = . With only the whirl moment, 
shown in Fig.21(a), 1F  and 1B  are amplified at all rotational speed. On the other hand, with only the precession moment, shown 
in Fig.21(b), all modes are damped. This is because the value of / 0.62R ωΩ ≈  for 1F  is larger than 0.5. With both whirl and 
precession moments, shown in Fig.21(c), the results are similar to the results with only precession moment. This shows that the 
precession moment is more important than the whirl moment for the case with small overhung rotors. 
   As described above, the criteria obtained by the simplified stability analysis in section 3 can be applied to the first order modes. 
However, detailed examination on the second order components shows that there are certain cases when the simplified criteria 
cannot be applied. This was found to be caused by larger fluid moment. If the fluid force moment was decreased to 1/1000 of the 
experimental values, it was found that the results of section 3 can be applied reasonably for all cases. 

5. Conclusions 
It was shown by a simplified model that the whirl moment on an overhung rotor destabilizes the whirl motion through 

structural coupling if the normal component of the moment has the same sign as the whirl speed ratio. From the measurement of 
whirl moment, it was found that the whirl moment is destabilizing the whirl motion at all whirl speed ratio, caused by the inertia 
on the leakage flow. Thus the leakage flow is more important in the destabilizing effects of whirl moment. The precession moment 
is destabilizing the precession in the region of 0 / 0.5ω< Ω ≤  caused by the interaction of tangential flow due to disk rotation 
with the variation of the axial clearance. So the tangential flow is important for the destabilization of the precession motion. From 
the vibration analysis of overhung rotors considering both whirl and precession, it was found that the whirl moment is more 
important for the rotors with larger overhung and the whirl moment destabilizes the whirl motion at all rotor speed. This shows 
that sufficient damping is always needed for the rotors with similar seal geometry as studied here. For smaller overhung rotors, the 
precession moment is more important than the whirl moment and the destabilizing effect of whirl moment is damped by the 
stabilizing effect of precession moment. The above results can be directly applied only to the case of leakage flow between 
rotating disc and stationary casing. However, there can be other cases when the fluid force moment destabilizes the whirl motion 
through structural coupling. 

Fig. 21 The complex frequency in the case of shaft length L/DT=0.033 
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