• Title/Summary/Keyword: Rotor Blade

Search Result 779, Processing Time 0.023 seconds

Conceptual Study and Design Ideas for SUAV Propulsion System (스마트무인기 신개념추진시스템 개념연구)

  • 전용민;정용운;양수석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2003
  • In this paper, the result of the conceptual study of a tipjet driven propulsion system is presented. The concept of a tipjet driven propulsion system is to employ tipjet as power source to drive a rotor Because the vehicle is supposed to takeoff and land vertically, a rotor system, which has tipjet nozzles, is adopted to fly like a helicopter. Exhaust gas, which is generated by an engine, Passes through an internal duct system and divided into four blade ducts. The design code is consists of two parts, engine model and internal duct model. Inside a rotating duct, compressible flow is affected by two additional force terms, centrifugal force and coriolis force and they govern the performance in rotary mode, The intention of this paper is to address the issues associated with sizing and optimizing configurations of a tipjet driven propulsion system especially in rotary wing mode.

An Experimental Study on the Turbulence Structure of Tip Vortices Generated by a Rotor Blade at the Initial Wake Age (회전익 끝와류의 초기 난류 구조에 관한 실험적 연구)

  • Kim, Young Soo;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.661-669
    • /
    • 1999
  • The evolutionary structure of a tip vortex in the initial period have been investigated by the two-dimensional LDV system. Circumferential and axial components of mean velocities, their turbulences and Reynolds stresses were measured by the phase averaging technique at seven different wake ages within one revolution of the rotor. Core growth was also analyzed. It was resulted that circumferential velocity components showed a Rankine combined vortex shape and their circulation profiles viewed in the radial direction were close to the n = 2 model of Vatistas' algebraic formula, while axial velocity components seemed to have the Gaussian profiles In these measured ranges with the base width of three times of core radii. Peaks of circumferential velocities and core radii showed distinct asymmetric behaviors before the wake age of $150^{\circ}$ over inboard and outboard sides of the slipstream, but they became symmetric afterwards. Turbulence profiles which had two peaks Inside the core radii in the earlier wake age were also changed to single peaks after $150^{\circ}$. These trends imply that the tip vortex was barely mature at this wake age.

Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU (연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계)

  • Kim, Eui-Youl;Lee, Young-Joon;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.

A Study on Aircraft Structure and Jet Engine Part1 : Analysis of Heat Conduction on the Turbine Disk for Jet Engine (항공기 구조 및 제트 엔진에 관한 연구 제 1 절 : 제트엔진용 터어빈디스크의 열전도 해석)

  • Gil Moon Park;Hwan Kyu Park;Jong Il Kim;Jin Heung Kim;Moo Seok Lee;Nak Kyu Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.153-174
    • /
    • 1985
  • The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operating temperature. The purpose of this study is to provider the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition. In this study, the optimum aspect ratio of turbine disk was analysed for various heat conductivity of turbine disk material by Finite Difference Method, and the effect of laminating method with high conductivity materials to disk thickness direction by Finite Element Methods in order to cool the disk. The laminating method with high conductivity material on the side of the disk is effective.

  • PDF

Prediction Method for Trailing-edge Serrated Wind Turbine Noise (풍력발전기 톱니형 뒷전 블레이드 소음 예측 기법)

  • Han, Dongyeon;Choi, Jihoon;Lee, Soogab
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • The reduction of noise from wind turbines has been studied using various methods. Some examples include controlling wind turbine blades, designing low-noise-emitting wind turbine blades, and using trailing-edge serrations. Among these methods, serration is considered an effective noise reduction method. Various studies have aimed to understand the effects of trailing-edge serration parameters. Most studies, however, have focused on fixed-wing concepts, and few have analyzed noise reduction or developed a prediction method for rotor-type blades. Herein, a noise prediction method, composed of two noise prediction methods for a wind turbine with trailing-edge serrations, is proposed. From the flow information obtained by an in-house program (WINFAS), the noise from non-serrated blades is calculated by turbulent ingestion noise and airfoil self-noise prediction methods. The degree of noise reduction caused by the trailing-edge serrations is predicted in the frequency domain by Lyu's method. The amount of noise reduction is subtracted from the predicted result of the non-serrated blade and the total reduction of the noise from the rotor blades is calculated.

Numerical Study on Steady and Unsteady Flow Characteristics of Nozzle-Rotor Flow in a Partial Admission Supersonic Axial Turbine with Sweep Angle (스윕 각이 적용된 부분 흡입형 초음속 축류 터빈의 정상, 비정상 공력 특성에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.173-179
    • /
    • 2012
  • Steady and unsteady three-dimensional RANS simulations have been performed on partial admission supersonic axial turbine having backward/forward sweep angles(${\pm}15^{\circ}$) and the results are compared with each other. The objective of this paper is to study the effect of unsteadiness on turbine flow characteristics and performances. The all results indicated that the losses of unsteady simulations were greater than those of steady cases. It was also shown that BSW model give the effect on the reducing of mass flow rates of tip leakage. In unsteady simulation, the increase of t-to-s efficiency at Rotor Out plane was observed more clearly.

  • PDF

The Steady-State Characteristic Analysis of 2MW PMSG based Direct-Drive Offshore Wind Turbine (2MW급 해상용 영구자석 직접 구동형 풍력 발전기의 정상상태 특성 해석)

  • Shin, Pyungho;Choi, Jungchul;Yoo, Chul;Kim, Daejin;Kyong, Namho;Ko, Heesang
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • In order to support various studies for assessment of onshore and offshore wind turbine system including foundations, the land-based version of 2MW PMSG direct drive wind turbine has been analyzed using HAWC2 that account for the coupled dynamics of the wind inflow, elasticity, and controls of the turbine. this work presents the steady-state response of the system and natural frequency of the first thirteen structure turbine modes as a function of wind speed. Rotor, generator speeds, pitch angle, power production, thrust force, deflections of tower and blade are compared for one case below and one case above the rated wind speed.

Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition

  • Wang, Xiuli;Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Yu, Haoqian;Chen, Yiming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1842-1852
    • /
    • 2019
  • The AP1000 reactor coolant pump is a vertical shielded-mixed flow pump, is the most important coolant power supply and energy exchange equipment in nuclear reactor primary circuit system, whose steadystate and transient performance affect the safety of the whole nuclear island. Moreover, safety demonstration of reactor coolant pump is the most important step to judge whether it can be practiced, among which software simulation is the first step of theoretical verification. This paper mainly introduces the fluid-solid coupling simulation method applied to reactor coolant pump, studying the feasibility of simulation results based on workbench fluid-solid coupling technology. The study found that: for the unsteady calculations of the pure liquid media, the average head of the reactor coolant pump with bidirectional fluid-solid coupling decreases to a certain extent. And the coupling result is closer to the real experimental value. The large stress and deformation of rotor under different flow conditions are mainly distributed on impeller and idler, and the stress concentration mainly occurs at the junction of front cover plate and blade outlet. Among the factors that affect the dynamic stress change of rotor, the pressure load takes a dominant position.

Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion (플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석)

  • Kim, Youngjin;Yu, Dong Ok;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.368-375
    • /
    • 2018
  • In the present study, aerodynamic load analysis for a floating off-shore wind turbine was conducted to examine the effect of periodic platform motion in the direction of 6-DOF on rotor aerodynamic performance. Blade-element momentum method(BEM) was used for a numerical simulation, the unsteady airload effects due to the flow separation and the shed wake were considered by adopting a dynamic stall model based on the indicial response method. Rotor induced downwash was estimated using the momentum theory, coupled with empirical corrections for the turbulent wake states. The periodic platform motions including the translational motion in the heave, sway and surge directions and the rotational motion in the roll, pitch and yaw directions were considered, and each platform motion was applied as a sinusoidal function. For the numerical simulation, NREL 5MW reference wind turbine was used as the target wind turbine. The results showed that among the translation modes, the surge motion has the largest influence on changing the rotor airloads, while the effect of pitch motion is predominant for the rotations.

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine (부유식 해상 풍력 발전기의 Tower Top 및 Rotor Shaft에 작용하는 동적 하중 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.