• Title/Summary/Keyword: Rotatory

Search Result 204, Processing Time 0.026 seconds

Compensation of Image Motion Effect Through Augmented Transformation Equation

  • Ghosh, Sanjib K.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.1 no.2
    • /
    • pp.23-29
    • /
    • 1983
  • Degradation of image caused by relative motion between the object and the imaging system (like a camera with its platform) is detrimental to precision photogrammetry. Principal modes of relative motion are identified. The discussion is, however, concentrated on the systematic motions, translatory and rotatory. Various analogical approaches of compensating for the image motion are cited. An analytical-computational approach is presented. This one considers the relationship of transformation bet ween the image and the object, known as the collinearity condition. The standard forms of collinearity condition equations are presented. Augmentation of these equations with regard to both translatory and rotatory motions are expounded. With ever increasing use of high speed computers (as well as analytical plotters in the realm of photogrammetry), this approach seems to be more costeffective and seems to yield better precision in the long run than other approaches that concentrate on analogical corrections to the image itself.

  • PDF

The Effect of Derotational Closing Wedge Akin Osteotomy for the Treatment of Hallux Valgus with the Pronation of Great Toe (무지의 회내 변형을 동반한 무지 외반증에서 폐쇄적 회외감염 Akin 절골술의 효과)

  • Moon, Gi-Hyuk;Ahn, Gil-Yeong;Lee, Yeong-Hyun;Nam, Il-Hyun;Lee, Jung-Ick
    • Journal of Korean Foot and Ankle Society
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • Purpose: We tried to understand the effects of the derotational closing wedge Akin osteotomy during the operation for the hallux valgus with pronation of great toe. Materials and Methods: Eighty five patients who had undergone Akin osteotomy among the eighty seven patients who had been treated with Scarf osteotomy with hallux valgus were included in this study. Derotational supination was added on the medial closing wedge Akin osteotomy at the base of proximal phalanx and it was secured with K-wire, headless screw or staple. We measured and analyzed pre- and post-operative hallux primus valgus angle and hallux pronational rotatory angle. Results: The hallux primus valgus angle improved an average of $14{\pm}2.98$ degrees to $-1{\pm}1.68$ degrees with the hallux pronational rotatory angle respectively from $24.8{\pm}7.64$ degrees to $4.7{\pm}4.22$ degrees. Conclusions: After the metatarsal osteotomy for the treatment of the hallux valgus with the pronation of great toe, derotational closing wedge Akin osteotomy can give us a belief that it can correct the hallux primus valgus angle and hallux pronational rotatory angle also and it can be a helpful method for minimizing the recurrence rate of the hallux valgus deformity.

  • PDF

Recurrent Volar Rotatory Dislocation of the Proximal Interphalangeal Joint of the Finger in Judo Player - A Case Report - (유도 선수에서 발생한 수지 근위 지관절의 재발성 전방 회전 탈구 - 1례 보고 -)

  • Hwang, Jung-Chul;Chung, Duke-Whan;Han, Chung-Soo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.8 no.1
    • /
    • pp.51-55
    • /
    • 2009
  • Volar rotatory dislocation of the proximal interphalangeal joint(PIP) of the finger is rare. We report a female judo player who had volar rotatory dislocation of the PIP joint of the middle finger. She had dislocation of PIP joint total 4 times. At operation, the central tendon was identified as being distension, with the ulnar collateral ligament ruptured. The ruptured ulnar collateral ligament was interposed within the joint. The ruptured ulnar collateral ligament was repaired and extensor expansion was repaired. At last follow-up, she didn't have recurrent dislocation during judo. Accurate diagnosis, early intervention and progressive rehabilitation of this injury are very important as other dislocations.

  • PDF

Free Vibrations of Timoshenko Beam with Elastomeric Bearings at Two Far Ends (양단이 탄성받침으로 지지된 Timoshenko 보의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Park, Chang Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.181-187
    • /
    • 2011
  • This paper deals with free vibrations of the Timoshenko beam supported by two elastomeric bearings at two far ends. The ordinary differential equation governing free vibrations of such beam is derived, in which both effects of rotatory inertia and shear deformation are included as the Timoshenko beam theory. Also, boundary conditions of the free end are derived based on the Timoshenko beam theory. The ordinary differential equation is solved by the numerical methods for calculating natural frequencies and mode shapes. Both effects of the rotatory inertia and shear deformation on natural frequencies are extensively discussed. Also, relationships between natural frequencies and slenderness ratio, foundation modulus and bearing length are presented. Typical mode shapes of bending moment and shear force as well as deflection are given in figures which show the positions of maximum amplitudes and nodal points.

Extensional Vibration Analysis of Curved Beams Including Rotatory Inertia and Shear Deformation Using DQM (미분구적법(DQM)을 이용 회전관성 및 전단변형을 포함한 곡선 보의 신장 진동해석)

  • Kang, Ki-Jun;Park, Cha-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.284-293
    • /
    • 2016
  • One of the most efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of complex algorithms of computer programming, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane vibrations of curved beams with extensibility of the arch axis, including the effects of rotatory inertial and shear deformation, are analyzed by the DQM. The fundamental frequencies are calculated for members with various slenderness ratios, shearing flexibilities, boundary conditions, and opening angles. The results are compared with the numerical results obtained by other methods for cases in which they are available. The DQM gives good mathematical precision even when only a limited number of grid points is used, and new results according to diverse variations are also suggested.

Free Vibrations of Arches in Cartesian Coordinates (직교좌표계에 의한 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Kim, Il-Jung;Choi, Kou-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.970-978
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in Cartesian coordinates rather than in polar coordinates. in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. The convergent efficiency is highly improved under the newly derived differential equations in Cartesian coordinates. The lowest four natural frequency parameters are reported, with and without the rotatory inertia, as functions of three non-dimensional system parameters the rise to chord length ratio. the span length to chord length ratio, and the slenderness ratio. Also typical mode shapes of vibrating arches are presented.

Effect of Manual Therapy on a Patient With Atlantoaxial Rotatory Subluxation (환축추 회전 아탈구 환자에 대한 도수치료 효과)

  • Jeon, Jae-guk;Yang, Seong-hwa;Shin, Eui-ju
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Background: An 8-year-old girl had severe neck pain and stiffness after trauma. CT scan showed atlantoaxial rotatory subluxation (AARS). She had conservative treatment because she did not have neurological symptoms and spinal basilar artery dysfunction. Conservative therapy was halter traction twice for 4 weeks. However, pain and stiffness persisted. She had been recommended to have surgery from her physician, but she received manual therapy for non-surgical procedures. Methods: The joint mobilization, muscle energy technique, motor control exercise, and deep neck flexor (DNF) endurance exercise were applied as manual therapy and 10 session for 2weeks. Results: Clinical outcomes were measured at initial baseline, after 2 weeks, and after 6weeks. Active range of motion was completely restored after 6weeks and numeric pain rating scale was completely reduced after 2 weeks. The strength of neck flexor muscle recovered to normal after 2 weeks, and the DNF endurance was improved to 25 seconds after 2 weeks and to 42 seconds after 6weeks. Motor control capacity recovered to 30 ㎜Hg after 2 weeks. Conclusions: This case report describes the immediate and short-term clinical outcomes for a patient presenting with symptoms of neck pain following AARS. Clinical rationale and patient preference aided the decision to incorporate manual therapy as a treatment for this patient. Manual therapy has shown a successful recovery in AARS patients, more research is needed to validate the inference of this case report.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Prosthetic resurfacing of engaging posterior capitellar defects in recurrent posterolateral rotatory instability of the elbow

  • Dani Rotman;Jorge Rojas Lievano;Shawn W. O'Driscoll
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.287-295
    • /
    • 2023
  • Background: Posterolateral rotatory instability (PLRI) is a common mechanism of recurrent elbow instability. While the essential lesion is a deficiency in the lateral ulnar collateral ligament (LUCL), there are often associated concomitant bony lesions, such as an Osborne-Cotterill lesions (posterior capitellar fractures) and marginal radial head fractures, that compromise stability. Currently, there is no standard treatment for posterior capitellar deficiency associated with recurrent PLRI. Methods: We conducted a retrospective review of five patients with recurrent PLRI of the elbow associated with a posterior capitellar impaction fracture engaging with the radial head during normal range of motion. The patients were treated surgically with LUCL reconstruction or repair and off-label reconstruction of the capitellar joint surface using a small metal prosthesis designed for metatarsal head resurfacing (HemiCAP toe classic). Results: Five patients (three adolescent males, two adult females) were treated between 2007 and 2018. At a median follow-up of 5 years, all patients had complete relief of their symptomatic instability. No patients had pain at rest, but two patients had mild pain (visual analog scale 1-3) during physical activity. Three patients rated their elbow as normal, one as almost normal, and one as greatly improved. On short-term radiographic follow-up there were no signs of implant loosening. None of the patients needed reoperation. Conclusions: Recurrent PLRI of the elbow associated with an engaging posterior capitellar lesion can be treated successfully by LUCL reconstruction and repair and filling of the capitellar defect with a metal prosthesis. This treatment option has excellent clinical results in the short-medium term. Level of evidence: IV.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.