• Title/Summary/Keyword: Rotatory

Search Result 204, Processing Time 0.023 seconds

A Morphologically Atypical Case of Atlantoaxial Rotatory Subluxation

  • Umebayashi, Daisuke;Hara, Masahito;Nishimura, Yusuke;Wakabayashi, Toshihiko
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.284-288
    • /
    • 2014
  • A rare case of atlantoaxial rotatory subluxation occurred after pediatric cervical spine surgery performed to remove a dumbbell-shaped meningioma at the level of the C1/C2 vertebrae. This case is classified as a post-surgical atlantoaxial rotatory subluxation, but has a very rare morphology that has not previously been reported. Although there are several reports about post-surgical atlantoaxial rotatory subluxation, an important point of this case is that it might be directly related to the spinal cord surgery in C1/C2 level. On day 6 after surgery, the patient presented with the Cock Robin position, and a computed tomography scan revealed a normal type of atlantoaxial rotatory subluxation. Manual reduction was performed followed by external fixation with a neck collar. About 7 months after the first surgery, the subluxation became severe, irreducible, and assumed an atypical form where the anterior tubercle of C1 migrated to a cranial position, and the posterior tubercle of C1 and the occipital bone leaned in a caudal direction. The pathogenic process suggested deformity of the occipital condyle and bilateral C2 superior facets with atlantooccipital subluxation. A second operation for reduction and fixation was performed, and the subluxation was stabilized by posterior fixation. We encountered an unusual case of a refractory subluxation that was associated with an atypical deformity of the upper spine. The case was successfully managed by posterior fixation.

A Study on the Closed Linear Movement of the Center of Mass in the Rotatory Movement of a Rigid Body

  • Chung, Byung-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1216-1219
    • /
    • 2002
  • It is understood so far that the center of mass does not make any linear movement from the rotatory movement of a rigid body in the closed system. However, it has been found that the center of mass of the system could make a closed linear movement due to production of an instantaneous center of mass by the Coriolis force in the rotatory movement of a rigid body in the closed system. The nature of the closed linear movement in the non-inertial system and that of the open movement in the inertial system are different from each other. That is, the closed movement is described like the time integration of frictional forces, which is different from the open movement usually considered and described like the time integration of external forces. It is shown in this paper that the Coriolis forces, called a fictitious force in the classical mechanics, is similar to the frictional force so that it causes to move the center of mass of a closed system. In this paper, following an explanation of the closed linear movement of a non-inertial system and the open movement of an inertial system, the source of the closed linear movement phenomenon of a rotatory rigid body is presented.

  • PDF

Reconstruction of Recurrent Posterolateral Rotatory Instability of the Elbow - A Case Report - (재발성 주관절 후외방 회전 불안정성의 재건술 - 증예보고 -)

  • Jeon In Ho;Kyung Hee Soo;Kim Poong Taek;Ihn Joo Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.4 no.2
    • /
    • pp.191-195
    • /
    • 2001
  • Posterolateral rotatory instability is the most common pattern of elbow instability especially which is recurrent, and is usually post-traumatic because of inadequate soft tissue healing. The lateral ulnar collateral ligament was reconstructed by using ipsilateral palmaris longus tendon. Functionally good result was obtained. This is a case report illustrating the posterolateral rotatory instability of the elbow and its reconstruction with palmaris longus.

  • PDF

Development of Simulator for Evaluation Balance by Using Vestibuloocular Reflex (전정안구반사를 이용한 평형감각 평가용 시뮬레이터의 개발)

  • 임승관;김규겸;정호춘;진달복;김민선;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.157-162
    • /
    • 1997
  • The purpose of this study was to develop a sinusoidal rotatory chair systim for evaluating the vestibular function in patients suffered from vertigo with vestibualr disorders. The sinusoidal rotatory chair system is composed of a rotatory chair systim and softwares. Maximum velocity of the rotatiry chair was upto 60 degree per second and frequency range was 0.01 to 0.64 Hz. To evaluate the vestibular function in vertigo patients, vestibuloocular reflex was measured by sinusoidal rotation of the whole body about vertical axis in the darkness, and optokinetic nystagmus, visual vestibuloocular reflex , and visual supression test were also performed. Eye movement was measured by means of a electronystgmograph amplifier through Ag-AgCI surface electrodes. Gain, phase, and symmetry were obtained from analysis of the eye movement ineuced by vestibular or visual stimulation. In healthy adults, sinusoidal rotation of the shole body produced nystagmus, of which gain was directly proportional to the velocity of stimulation. The gain of visual vestibuloocular reflex or optokinetic nystagmus, and it was suppressed markedly by visual suppression test. These results suggest that the sinusoieal rotatory chair systim which was developed by this study can evaluate the vestibular function quantitatively, also this system is very useful to diagnose and to dstimate the vestibualr function during recovery from vertigo

  • PDF

Improvement of Torque Characteristics of a Rotatory Two-Phase Transverse Flux Machine Optimizing the shape of Rotor Pole (자석 형상 최적화를 통한 축방향 이상 횡자속형 전동기의 토크 특성 향상에 관한 연구)

  • Ahn, Hee-Tae;Jang, Gun-Hee;Chang, Jung-Hwan;Chung, Shi-Uk;Kang, Do-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.286-292
    • /
    • 2008
  • Transverse flux machine (TFM) has been developed to drive a machine of large input power at low-speed. However, it has complicated structure and large torque ripple due to its inherent structure In this paper the characteristics of torque of a rotatory two-phase TFM are analyzed by using the 3-dimensional finite to element method and optimal design. This research shows that one of the effective design variables is the skew angle of permanent magnet. The skew angles of permanent magnet are optimized by using a Progressive Quadratic Response Surface Method (PQRSM). It also shows that the proposed optimal skew magnet not only increases average torque but also decreases torque ripple of a rotatory two-phase TFM.

  • PDF

In-Plane Extensional Vibration Analysis of Curved Beams using DQM (미분구적법을 이용한 곡선보의 태평면 진동분석)

  • Kang, Ki-Jun;Kim, Byeong-Sam
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.99-104
    • /
    • 2002
  • DQM(differential quadrature method) is applied to computation of eigenvalues of the equations of motion governing the free in-plane vibration for circular curved beams including mid-surface extension and the effects of rotatory inertia. Fundamental frequencies are calculated for the members with various end conditions and opening angles. The results are compared with numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

Improvement of Torque Characteristics of a Rotatory Two-phase Transverse Flux Machine Optimizing the Shape of Rotor Pole (자석 형상 최적화를 통한 축방향 이상 횡자속형 전동기의 토크 특성 향상에 관한 연구)

  • Ahn, Hee-Tae;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1003-1011
    • /
    • 2009
  • Transverse flux machine(TFM) has been developed to drive a machine of large input power at low-speed. However, it has complicated structure and large torque ripple due to its inherent structure. In this paper the characteristics of torque of a rotatory two-phase TFM are analyzed by using the 3-dimensional finite element method and optimal design. This research shows that one of the effective design variables is the skew angle of permanent magnet. The skew angles of permanent magnet are optimized by using a genetic algorithm. It also shows that the proposed optimal skew magnet not only increases average torque but also decreases torque ripple of a rotatory two-phase TFM.

Post-traumatic Atlantoaxial Rotatory Dislocation in an Adult Treated by Open Reduction and C1-C2 Transpedicular Screw Fixation

  • Kim, Yeon-Seong;Lee, Jung-Kil;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.4
    • /
    • pp.248-251
    • /
    • 2007
  • Atlantoaxial rotatory dislocation [AARD] is an uncommon disorder of childhood in which clinical diagnosis is generally difficult and often made late. It is very rare in adults because of the unique biomechanical features of the atlantoaxial articulation. We report a case of post-traumatic AARD in an adult. Reduction was difficult to obtain by skull traction and gentle manipulation. Therefore, the patient was treated surgically by an open reduction, transpedicular screw fixation, and posterior C1-2 wiring with graft. The normal atlantoaxial relation was restored with disappearance of torticollis. Postoperatively, the patient remains neurologically intact and has radiographic documentation of fusion. Atlantoaxial transpedicular screw fixation can be one of the treatment options for the AARD.

Reduction of Toque Ripple and Unbalanced Magnetic Force of a Rotatory Axial Two-Phase Transverse Flux Machine by Using Herringbone Teeth (헤링본 치를 이용한 축방향 이상 횡자속형 전동기의 토크 리플과 불평형 자기력 저감)

  • Ahn, Hee-Tae;Jang, Gun-Hee;Chang, Jung-Hwan;Chung, Shi-Uk;Kang, Do-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.682-688
    • /
    • 2008
  • Transverse flux machine (TFM) has been considered as a promising driving machine especially at the low-speed applications because it has higher power density, torque and efficiency than the conventional electrical motors. However, it has complicated structure, large torque ripple and sometimes unbalanced magnetic force due to its inherent structure. This paper investigates the characteristics of torque ripple and unbalanced magnetic force of a rotatory two-phase TFM due to the teeth geometry by using the 3-dimensional finite element method, and it develops a rotatory two-phase TFM with herringbone teeth to reduce the torque ripple as well as to eliminate the unbalanced magnetic force.

  • PDF

Free Vibration Analysis of Stepped Parabolic Arches with Timoshenko's Theory (Timoshenko 이론에 의한 불연속 변단면 포물선 아치의 자유진동 해석)

  • 오상진;진태기;모정만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.942-947
    • /
    • 2004
  • The differential equations governing free, in-plane vibrations of stepped non-circuiar arches are derived as nondimensional forms including the effects of rotatory inertia, shear deformation and axial deformation. The governing equations are solved numerically to obtain frequencies and mode shapes. The lowest four natural frequencies and mode shapes are calculated for the stepped parabolic arches with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of arch rise to span length ratios, slenderness ratios, section ratios, and discontinuous sector ratios are considered. The effect of rotatory inertia and shear deformation on natural frequencies is reported. Typical mode shapes of vibrating arches are also presented.

  • PDF