• 제목/요약/키워드: Rotational temperature

검색결과 348건 처리시간 0.026초

회전형 레오미터와 진동형 점도계를 이용한 세라믹 슬러리의 점도 비교 (Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometer and a Vibrational Viscometer)

  • 지혜;임형미;장영욱;이희수
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.542-548
    • /
    • 2012
  • The viscosity of a ceramic slurry depends on the slurry concentration, particle shape and size, hydrodynamic interactions, temperature, shear rate, pre-treatment condition and the method of measurement with the selected equipment. Representative ceramic slurries with low to high viscosity levels are selected from colloidal silica, barium titanate slurry and glass frit paste. Rotational rheometers and vibrational viscometers are used to compare the measured viscosity for various ceramic slurries. The rotational rheometer measured the viscosity according to the change of the shear rate or the rotational speed. On the other hand, the vibrational viscometer measured one point of the viscosity in a fixed vibrational mode. The rotational rheometer allows the measurement of the viscosity of a ceramic paste with a viscosity higher than 100,000 cP, while the vibrational viscometer provides an easy and quick method to measure the viscosity without deformation of the ceramic slurry due to the measurement method. It is necessary to select suitable equipment with which to measure the viscosity depending on the purpose of the measurement.

Fault Diagnosis of Ball Bearings within Rotational Machines Using the Infrared Thermography Method

  • Kim, Dong-Yeon;Yun, Han-Bit;Yang, Sung-Mo;Kim, Won-Tae;Hong, Dong-Pyo
    • 비파괴검사학회지
    • /
    • 제30권6호
    • /
    • pp.558-563
    • /
    • 2010
  • In this paper, the novel approach for the fault diagnosis of the bearing equipped with rotational mechanical facilities was studied. As research works, by applying the ball bearing used extensively in many industrial fields, experiments were conducted in order to propose the new prognostic method about the condition monitoring for the rotational bodies based on the condition analysis of infrared thermography. Also, by using the vibration spectrum analysis, the real time monitoring was performed. As results, it was confirmed that infrared thermography method could be adapted into monitor and diagnose the fault for bearing by evaluating quantitatively and qualitatively the temperature characteristics according to the condition of the ball bearing.

회전기계의 고온환경에서의 원격계측

  • 김치엽;최만용;허석한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.158-160
    • /
    • 1992
  • To control internal temperature distribution of moulding machine is very important in molding products such as Polycabonate. Nylon and PVDF. In this experiment, we developed temperature measurement system in order to control temperature of moulding machine. It was measured by telemetering system because of rotational mechanism. Form experimental results, it was sufficient to apply to moulding machine under 250 .deg C.

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정 (Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment)

  • 서판기;정용식;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

$^{13}$C NMR Relaxation Study of Internal Rotation of Methyl Groups-Spin-Rotational Relaxation of methyl Carbon-13 in 2-bromo-p-xylene, 2,5-dimethylanisole and 2,5-dimethylaniline

  • Lee, Jo-Woong;Cho, Chull-Hyung;Park, Seong-Kyu;Jo, Byung-Wook;Ro, Bong-Oh;Choe, Sung-Hyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권2호
    • /
    • pp.73-79
    • /
    • 1987
  • In this work we have investigated temperature dependence of spin-rotational relaxation rate, $(1/T_1)_{SR}$, of methyl carbon-13's in 2-bromo-p-xylene, 2,5-dimethylaniline, and 2,5-dimethylanisole and have found that temperature behaviors of two methyl carbon-13's in ortho- and meta-position, respectively, are substantially different. It has been confirmed that the modified Burke-Chan model proposed by Park et al. can nicely explain different temperature dependence of $(1/T_1)_{SR}$ for these two methyl carbon-13's while the original Burke-Chan model fails to do so.

Diffusion Behavior of n-Alkanes by Molecular Dynamics Simulations

  • Goo, Geun-Hoi;Sung, Gi-Hong;Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1595-1603
    • /
    • 2002
  • In this paper we have presented the results of diffusion behavior of model systems for eight liquid n-alkanes ($C_{12}$-$C_{44}$) in a canonical (NVT) ensemble at several temperatures using molecular dynamics simulations. For these n-alkanes of small chain length n, the chains are clearly <$R_{ee}^2$>/6<$R_g^2$>>1 and non-Gaussian. This result implies that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime, though the ratio becomes close to the unity as n increases. Calculated self-diffusion constants $D_{self}$ are comparable with experimental results and the Arrhenius plot of self-diffusion constants versus inverse temperature shows a different temperature dependence of diffusion on the chain length. The global rotational motion of n-alkanes is examined by characterizing the orientation relaxation of the end-to-end vector and it is found that the ratio ${\tau}1/{\tau}2$ is less than 3, the value expected for a isotropically diffusive rotational process. The friction constants ${\xi}$of the whole molecules of n-alkanes are calculated directly from the force auto-correlation (FAC) functions and compared with the monomeric friction constants ${\xi}_D$ extracted from $D_{self}$. Both the friction constants give a correct qualitative trends: decrease with increasing temperature and increase with increasing chain length. The friction constant calculated from the FAC's decreases very slowly with increasing temperature, while the monomeric friction constant varies rapidly with temperature. By considering the orientation relaxation of local vectors and diffusion of each site, it is found that rotational and translational diffusions of the ends are faster than those of the center.

파이로 시동기의 압력변화와 터빈 블레이드 회전수 변화에 따른 충동형 터빈 블레이드 입구의 가스온도 분포 해석 (Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Pyro Starter Pressure)

  • 이인철;변용우;구자예;이상도;김귀순;문인상;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.94-97
    • /
    • 2008
  • 부분 흡입형 터빈의 표면 가스온도 분포 해석은 유동장 내부가 3차원의 매우 복잡한 유동장을 구성하기 때문에 실제 해석상 많은 시간이 소요된다. 파이로 시동기는 입사각 $18^{\circ}$로 설치되어 있으며, 105개의 충동형 터빈 블레이드로 구성되어 있다. 다양한 파이로 시동기 압력 변화에 대하여 터빈 블레이드의 표면 가스온도 분포 해석이 이루어 졌으며, Round형의 터빈 블레이드는 1423K의 온도와 7.2MPa의 압력 조건에서 16000rpm까지 회전하게 된다. 파이로 시동기의 압력과 터빈 블레이드의 회전수가 증가함에 따라 터빈 블레이드의 표면 가스 온도는 하강하게 되며, 파이로 시동기 압력이 5.75MPa 이고 회전수가 12100rpm의 보다 증가함에 따라 터빈 블레이드로 입구의 유동장에는 균일한 표면 가스 온도가 유입되는 것을 확인 할 수 있었다.

  • PDF

Rotational capacity of pre-damaged I-section steel beams at elevated temperatures

  • Pantousa, Daphne;Mistakidis, Euripidis
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.53-66
    • /
    • 2017
  • Structures submitted to Fire-After-Earthquake loading situations, are first experiencing inelastic deformations due to the seismic action and are then submitted to the thermal loading. This means that in the case of steel framed structures, at the starting point of the fire, plastic hinges have already been formed at the ends of the beams. The basic objective of this paper is the evaluation of the rotational capacity of steel I-section beams damaged due to prior earthquake loading, at increased temperatures. The study is conducted numerically and three-dimensional models are used in order to capture accurately the nonlinear behaviour of the steel beams. Different levels of earthquake-induced damage are examined in order to study the effect of the initial state of damage to the temperature-evolution of the rotational capacity. The study starts with the reference case where the beam is undamaged and in the sequel cyclic loading patterns are taken into account, which represent earthquakes loads of increasing magnitude. Additionally, the study extends to the evaluation of the ultimate plastic rotation of the steel beams which corresponds to the point where the rotational capacity of the beam is exhausted. The aforementioned value of rotation can be used as a criterion for the determination of the fire-resistance time of the structure in case of Fire-After-Earthquake situations.