• Title/Summary/Keyword: Rotational direction

Search Result 324, Processing Time 0.021 seconds

Phase Resonance in Centrifugal Fluid Machinery -A Comparison between Pump Mode and Turbine Mode Operations and a Discussion of Mechanisms of Flow Rate Fluctuation through a Stator-

  • Yonezawa, Koichi;Toyahara, Shingo;Motoki, Shingo;Tanaka, Hiroshi;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.42-53
    • /
    • 2014
  • Phase resonance in Francis type hydraulic turbine is studied. The phase resonance is a phenomenon that the pressure fluctuation in the penstock of hydraulic turbine installation can become very large when the pressure waves from each guide vane caused by the interaction with the runner vane reach the penstock with the same phase. Experimental and numerical studies have been carried out using a centrifugal fan. In the present study, comparisons between the pump mode and the turbine mode operations are made. The experimental and numerical results show that the rotational direction of the rotor does not affect characteristics of the pressure fluctuation but the propagation direction of the rotorstator interaction mode plays an important role. Flow rate fluctuations through the stator are examined numerically. It has been found that the blade passing flow rate fluctuation component can be evaluated by the difference of the fluctuating pressure at the inlet and the outlet of the stator. The amplitude of the blade passage component of the pressure fluctuation is greater at the stator inlet than the one at the stator outlet. The rotor-stator interaction mode component is almost identical at the inlet and the outlet of the stator. It was demonstrated that the pressure fluctuation in the volute and connecting pipe normalized by the flow rate fluctuation becomes the same for pump and turbine mode operations, and depends on the rotational direction on the interaction mode.

Prediction of Power Consumed By Forward and Reverse Rotation Rotavator using Field Load Analysis (필드 부하 분석을 이용한 정/역회전 로타베이터의 소요 동력 예측)

  • Kim, Jeong-Gil;Park, Jin-Sun;Cho, Seung-Je;Lee, Dong-Keun;Park, Young-Jun;Moon, Sang-Gon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.67-73
    • /
    • 2021
  • In this study, we installed forward and reverse rotation rotavators on a tractor to measure the load in the field and analyze the power consumed. The rotavator is attached to the rear of the tractor and transmits the power applied from the power take off (PTO) of the tractor to the rotating shaft of the rotavator, and it plows or reverses the soil according to the rotational direction of the rotating shaft. Depending on the rotational direction of the rotavator, the power consumed in the tractor engine and the power transmitted to the tractor axle and rotavator also vary, thus, research of load and power is an essential factor in designing the system. As a field test results, 84.1-93.5% power was consumed by the forward rotation rotavator, and 37.8-57.5% power was consumed by the reverse rotation rotavator. In addition, depending on the rotation direction of the rotavator, the power consumed by the tractor was in the order of PTO and axle. Based on the research results, development of reliable rotavator systems would be possible in the future research.

Evaluation on the Usefulness of 6DoF Couch in V-MAT on Patients with Long length of Target (표적의 길이가 긴 환자의 용적회전변조 방사선치료 시 6DoF Couch의 유용성 평가)

  • Choi, Young Se;Park, Hyo Kuk;Kim, Se Young;Kim, Joo Ho;Lee, Sang Kyoo;Yoon, Jong Won;Cho, Jung Heui
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.53-64
    • /
    • 2017
  • Purpose: To evaluate the usefulness of the $HexaPOD^{TM}$ evo RT system(6DoF couch) and the tendency of dose difference according to size of rotational direction error for volumetric rotational modulated radiotherapy(V-MAT) in patients with long target lengths. Therefore, it is suggested to recommend the need for rotational error correction. Materials and Methods: Ten patients with Esophagus cancer or Breast cancer including SCL treated with HexaPOD 6DoF(Six-Degree of Freedom) couch were included in this study. 6DoF couch was used to measure the difference in dose according to the rotation error in the directions of Rx(pitch), Ry(roll), and Rz(yaw). Each rotation error was applied. Positioning variation on x, y and z axis was verified and random variations were made by 6DoF couch with positioning variation. Modified DQA is conducted and point dose and gamma value are analyzed and compared. In addition, after applying the rotation error every $1^{\circ}$ to treatment plans of each target with a diameter of 3 cm, 5, 10, 15, and 20 cm respectively, gamma passing rate is being monitored by its aspect of change according to types and sizes of the target length and rotation error. Results: Mean error of the point dose and Gamma passing rate when the position variation was applied were $2.50{\pm}1.11%$ and $84.1{\pm}7.39%$ in the Rx direction, $2.36{\pm}1.16%$, and $81.0{\pm}8.49%$ in the Ry, $2.35{\pm}1.10%$ and $84.4{\pm}6.99%$ in the Rz direction, respectively. As a result of analysis on gamma passing rate according to types and sizes of the target length and rotation error, the gamma passing rate tended to decrease with increasing rotation error in the Rx and Rz directions except Ry direction. In particular, the lowest gamma passing rate (74.2 %) was in the case of $2.5^{\circ}$ rotation error in Rz direction of the target of 10 cm. Conclusion: The correction of the rotational error is needed for volumetric modulated radiotherapy of the treatment area with a long target length, and the use of 6DoF couch will improve the reproducibility of the patient position and the quality of the treatment.

  • PDF

Posture Control through Decomposed Control for Multi-Legged Biomimetic Underwater Robot (CALEB10) (다족형 생체모방 수중 로봇(CALEB10)의 각 자유도를 분리한 자세 제어)

  • Lee, Hansol;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • This paper describes a study on posture control of the multi-legged biomimetic underwater robot (CALEB10). Because the underwater environment has a feature that all degrees of freedom are coupled to each other, we designed the posture control algorithm by separating each degree of freedom. Not only should the research on posture control of underwater robots be a precedent study for position control, but it is also necessary to compensate disturbance in each direction. In the research on the yaw directional posture control, we made the drag force generated by the stroke of the left leg and the right leg occur asymmetrically, in order that a rotational moment is generated along the yaw direction. In the composite swimming controller in which the controllers in each direction are combined, we designed the algorithm to determine the control weights in each direction according to the error angle along the yaw direction. The performance of the proposed posture control method is verified by a dynamical simulator and underwater experiments.

Rotational Characteristics of Target Registration Error for Contour-based Registration in Neuronavigation System: A Phantom Study (뉴로내비게이션 시스템 표면정합에 대한 병변 정합 오차의 회전적 특성 분석: 팬텀 연구)

  • Park, Hyun-Joon;Mun, Joung Hwan;Yoo, Hakje;Shin, Ki-Young;Sim, Taeyong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, we investigated the rotational characteristics which were comprised of directionality and linearity of target registration error (TRE) as a study in advance to enhance the accuracy of contour-based registration in neuronavigation. For the experiment, two rigid head phantoms that have different faces with specially designed target frame fixed inside of the phantoms were used. Three-dimensional coordinates of facial surface point cloud and target point of the phantoms were acquired using computed tomography (CT) and 3D scanner. Iterative closest point (ICP) method was used for registration of two different point cloud and the directionality and linearity of TRE in overall head were calculated by using 3D position of targets after registration. As a result, it was represented that TRE had consistent direction in overall head region and was increased in linear fashion as distance from facial surface, but did not show high linearity. These results indicated that it is possible for decrease TRE by controlling orientation of facial surface point cloud acquired from scanner, and the prediction of TRE from surface registration error can decrease the registration accuracy in lesion. In the further studies, we have to develop the contour-based registration method for improvement of accuracy by considering rotational characteristics of TRE.

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion (인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • Tidal farm is a multi-arrayed turbine system for utilizing tidal stream energy. For horizontal-axis turbine(HAT) system, it is recommended that each unit has to be deployed far apart in order to avoid hydrodynamic interference among turbines, as proposed by the European Marine Energy Centre(EMEC). But there is no rule for the arrangement of vertical-axis turbine(VAT) yet. Moreover it has been reported that a proper arrangement of adjacent turbines can enhance the overall efficiency even greater than an arrangement without mutual interference effect. This paper suggests the layout of VATs showing the better performances, which turned out to be quite different from HATs' arrangement. Numerical calculations were performed to investigate the performance variation in terms of the rotational direction as well as the distance between turbines. It has been shown that the best combination of rotational direction and distance between turbines can increase its performance higher about 9.2% than that of two independently operated turbines. It is likely that such improvement is due to the increased velocity between adjacent turbines. For diagonally arranged turbines, the maximum normalized mean power coefficient was obtained to be higher about 5.6% than that of two independent turbines. It is expected that the present results can be utilized for conceptual design of tidal farm to harness the tidal stream energy.

Experimental Investigation of the Effect of Lead Errors on Helical Gear and Bearing Vibration Transmission Characteristics

  • Park, Chan-Il;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1395-1403
    • /
    • 2002
  • The characteristics of gear meshing vibration undesgo change as the vibration is transmitted from the gear to the housing. Therefore, vibration transmission characteristics of helical gear systems must be understood before the effective methods of reducing gear noise can be found. In this work, using a helical gear with different lead errors, the gear vibration in the rotational direction and the bearing vibration are measured. The frequency characteristics of gear and bearing vibration are investigated and a comparson is also provided.

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

Propagation Dynamics of Optical Vortices with Anisotropic Phase Profiles (비균일 위상 형태를 갖는 광보텍스의 진행 특성)

  • Kim Gwang-Hun;Lee Hae-Jun;Kim Jong-Uk;Seok Hui-Yong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.110-111
    • /
    • 2002
  • Controllable waveguide of optical vortex solitons is possible by using the rotational characteristics of optical vortices, while the relative phase difference across the soliton profiles can be used to steer the waveguide direction in case of two-dimensional dark solitons. It is important to understand in detail what sources contribute to the rotation of optical vortices to apply optical vortex solitons to the optical switchyard. (omitted)

  • PDF