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Controllable waveguide of optical vortex solitons is possible by wusing the rotational
characteristics of optical vortices, while the relative phase difference across the soliton profiles can
be used to steer the waveguide direction in case of two-dimensional dark solitons. It is important to
understand in detail what sources contribute to the rotation of optical vortices to apply optical
vortex solitons to the optical switchyard. Most of previous studies were focused on optical vortices
with constant phase gradient along a circular path around the vortex axis. Since an optical vortex
propagates in a djrectioh perpendicular to the wavefront at its position with the phase function of
this optical vortex subtracted, we think that the propagation dynamics of optical vortices is
influenced by the phase function itself. In other words, we expect that an optical vortex experiences
a large rotation when the wavefront by other optical vortices is deformed to have a steep slope at
the vortex position. Such a non-uniform phase gradient can be considered by introducing the
anisotropy that is one of the morphological parameters determining the internal structure of the
vortex. We studied analytically the rotation rate of a pair of anisotropic optical vortices with the
same charge and investigated numerically the effect of anisotropic phase profiles on the propagation
dynamics of optical vortices with localized core function in the linear and nonlinear regimes.

Nonlinear propagation of a beam in an optical Kerr medium is described mathematically by
(1+2)-dimensional nonlinear Schrédinger equation normalized by
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For numerical calculations, an initial field envelop of a beam containing a pair of anisotropic
optical vortices with the separation distance of d may be expressed as

A(X,Y,Z=0)= exp(— R*/w?)tanh(R,/w,)tanh (Ry/ w,) exp[i{ @; + O)]
where R; = [(Xd/2)® + Y?1'? is the radial distance from the j-th vortex center, and ®;(X, Y) =
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tan '(0v;/x;) is the anisotropic phase function, 0is the anisotropy factor that is related with the
deformation of phase profiles.

Analytical expression of the rotation rate of anisotropoic optical vortixes, including the
contribution of the intensity gradient by other tanh-vortex and backgound beam, is given by
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We found analytically that the rotation rate is proportional to the anisotropy. Numerical results
showed that the initial rotation is in good agreement with that from analytical approach.
Modification of the field distribution changes the rotate rate, and even the rotational direction, during
the propagation in the linear regime. However, in the nonlinear regime, the propagation dynamics is
much different from our expectation, that large difference of the rotation angle was not observed.
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Fig. 3 Initial Rotation rate
as a function of the anisotropy value
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