• Title/Summary/Keyword: Rotational Spring

Search Result 213, Processing Time 0.023 seconds

THE VARIATIONAL THEORY OF A CIRCULAR ARCH WITH TORSIONAL SPRINGS AT BOTH EDGES

  • Go, Jae-Gwi
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.707-717
    • /
    • 2007
  • Arches are constrained with rotational resistance at both edges. An energy method is used to derive variational formulation which is used to prove the existence of equilibrium states of elastic circular arches for the torsional spring constants ${\rho}-\;{\geq}\;0,\;{\rho}+\;{\geq}\;0,\;and\;{\rho}-\;+\;{\rho}+\;>\;0$. The boundary conditions are searched using the existence of minimum potential energy.

An Experimental Study to Evaluate the Stiffness of Fastening Systems - Translational Stiffness along the Vertical Axis of Rail, Rotational Stiffness along the Strong Axis of Rail - (체결장치의 강성 평가를 위한 실험적 연구 - 레일 연직방향 병진강성, 레일 강축에 대한 회전강성 -)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 2008
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces caused the compressive and tensile forces in the fastening system. In the past, a structural analysis has been performed to investigate the safety of fastening system which was modeled with one directional spring elements based on the compressive test of fastening system. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. Therefore, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated, also structural behavior of the fastening system was analyzed.

Numerical analysis of segmental tunnel linings - Use of the beam-spring and solid-interface methods

  • Rashiddel, Alireza;Hajihassani, Mohsen;Kharghani, Mehdi;Valizadeh, Hadi;Rahmannejad, Reza;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.471-486
    • /
    • 2022
  • The effect of segmental joints is one of main importance for the segmental lining design when tunnels are excavated by a mechanized process. In this paper, segmental tunnel linings are analyzed by two numerical methods, namely the Beam-Spring Method (BSM) and the Solid-Interface Method (SIM). For this purpose, the Tehran Subway Line 6 Tunnel is considered to be the reference case. Comprehensive 2D numerical simulations are performed considering the soil's calibrated plastic hardening model (PH). Also, an advanced 3D numerical model was used to obtain the stress relaxation value. The SIM numerical model is conducted to calculate the average rotational stiffness of the longitudinal joints considering the joints bending moment distribution and joints openings. Then, based on the BSM, a sensitivity analysis was performed to investigate the influence of the ground rigidity, depth to diameter ratios, slippage between the segment and ground, segment thickness, number of segments and pattern of joints. The findings indicate that when the longitudinal joints are flexible, the soil-segment interaction effect is significant. The joint rotational stiffness effect becomes remarkable with increasing the segment thickness, segment number, and tunnel depth. The pattern of longitudinal joints, in addition to the joint stiffness ratio and number of segments, also depends on the placement of longitudinal joints of the key segment in the tunnel crown (similar to patterns B and B').

Free Vibration Analysis of Arches With General Boundary Condition (일반 경계조건 아치의 자유진동해석)

  • 이태은;이종국;이병구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.995-999
    • /
    • 2001
  • This paper deals with the free vibrations of arches with general boundary condition. Based on the dynamic equilibrium equations of a arch element acting the stress resultants and the inertia forces, the governing differential equation is derived for the in-plane free vibration of such arches. Differential equations are solved numerically to calculate natural frequencies. In numerical examples, the parabolic arch is considered. The effects of the arch rise to span length ratio, the slenderness ratio, the vertical spring coefficient and the rotational spring coefficient on the natural frequencies are analyzed.

  • PDF

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

Modeling of EGR Valve Actuator (EGR 밸브 액추에이터 모델링)

  • Seo, Eun-Sung;Shin, Hwi-Beom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.390-396
    • /
    • 2017
  • In this paper, an exact mathematical model is derived for an exhaust gas recirculation (EGR) valve actuator driven by an H-bridge converter. Particularly, a spring torque model of the EGR valve is proposed. The spring torque model is proposed by converting spring force and Coulomb frictional force in linear motion into a rotational torque. Moreover, a mechanical end-stop model was proposed by the valve mechanism. The accuracy of the proposed model is verified by comparing the experimental results with the simulated results.

Dynamic Behavior of Spring Supported Cantilever Beam with Crack and Moving Mass (크랙과 이동질량을 가진 탄성지지 외팔보의 진동특성)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.534-537
    • /
    • 2004
  • In this paper, a dynamic behavior of spring supported cantilever beam with a crack and a moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's eauation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in the first mode of fracture. As the depth of the crack is increased the tip displacement of the cantilever beam is increased.

  • PDF

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Stability of Water Tower with a Relatively Small Footing (상대적으로 작은 기초를 갖는 급수탑의 안정성)

  • Oh Sang-Jin;Jin Tae-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.963-968
    • /
    • 2006
  • The main purpose of this paper is to investigate the stability of water tower with a relatively small footing. The water tower is modeled that the column carrying a container is supported by a rotational spring at the base and is of constant cross-section, with a weight per unit length of column axis. The column model is based on the Bernoulli-Euler beam theory. The Runge-Kutta method and Determinant Search method are used to perform the integration of the governing differential equation and to determine the critical values(critical own weight. and critical buckling load), respectively. The critical buckling loads are calculated over a range of system parameters: the rotational stiffness parameter, the dimensionless radius of container and the own weight parameter of the column. The relation between the rotational stiffness parameter and the critical own weight parameter of the column is analyzed.

  • PDF

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • Park, Cheol-U;Ju, Hyeon-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF