• Title/Summary/Keyword: Rotation Vector

Search Result 247, Processing Time 0.028 seconds

Development of 5-Axis Microscribe System for Off-Line Buffing Robot Path Programming and Its Application (버핑 로봇의 오프라인 경로 프로그래밍용 5축 마이크로스크라이브 개발 및 응용)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • We propose how to program the off-line buffing robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot mechanism. The microscribe system we developed consists of a 5-axis robot link with a turn table, a signal processing unit, PC and an application software program. Itmakes a robot path on the shoes' upper in accordance with the movement of a microscribe with many joints. The developed system calculates the encoder pulse values for the microscribe arm's rotation and transmits the angle pulse values to the PC through a processing unit. Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from microscribe joint one. Problems with the microscribe's kinematics can be solved efficiently and systematically by D-H representation. With the coordinate values calculated by D-H equation, our system can draw a buffing gauge-line on the upper sole. We obtain shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. By applying the system to the buffing robot in a flexible manufacturing system, it can be used effectively to program the path of a real buffing robot.

Effects of Physical Characteristics Factors on Ankle Joint Injury during One Leg Drop Landing (외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향)

  • Lee, Seong-Yeol;Lee, Hyo-Keun;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.839-847
    • /
    • 2020
  • The purpose of this study was to analyze the effects of ankle flexibility, gender, and Q-angle on the ankle joint injury factors during one leg drop landing. For this study, 16 males(age: 20.19±1.78 years, mass: 69.54±10.12 kg, height: 173.22±4.43 cm) and 16 females(age: 21.05±1.53 years, mass: 61.75±6.97 kg, height: 159.34±4.56 cm) in their 20's majoring in physical education using the right foot as their dominant feet were selected as subjects. First, an independent t-test of joint motion and joint moment according to the experience of ankle injury was conducted to determine the effect of physical characteristics on ankle joint injury during one leg drop landing(α = .05). Second, the variable that showed a significant difference through t-test was set as the dependent variable, and the ankle flexibility, gender difference, and Q-angle were designated as independent variables to use Multiple Linear Regression(α =. 05). As a result of this study, it was found that the group that experienced an ankle joint injury was found to use a landing strategy and technique through adduction of the ankle joint and internal rotation of the knee joint, unlike the group without an injury. It was also confirmed that this movement increases the extension moment of the ankle joint and decreases the extension moment of the hip joint. In particular, it was found that the dorsi flexion flexibility of the ankle affects the ankle and knee landing strategy, and the gender difference affects the ankle extension moment. Therefore, it was confirmed that physical characteristics factors affecting ankle joint injuries during one leg drop landing.

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

Nose Changes after Maxillary Advancement Surgery in Skeletal Class III Malocclusion (골격성 III급 부정교합자에서 상악골 전방 이동술 후 코의 변화에 관한 연구)

  • Kang, Eun-Hee;Park, Soo-Byung;Kim, Jong-Ryoul
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.657-668
    • /
    • 2000
  • The purpose of this study was to evaluate the amount and interrelationship of the soft tissue of nose and maxillary changes and to identify the nasal morphologic features that indicate susceptibility to nasal deflection in such a manner that they would be useful in presurgical prediction of nasal changes after maxillary advancement surgery in skeletal Class III malocclusion. The sample consisted of 25 adult patients (13 males and 12 females) who had severe anteroposterior skeletal discrepancy. The patients had received presurgical orthodontic treatment. They underwent a Le Fort I advancement osteotomy, rigid internal fixation, alar cinch suture and V-Y advancement lip closure. The presurgical and postsurgical lateral cephalograms and lateral and frontal facial photographs were evaluated. The computerized statistical analysis was carried out. Soft tissue of nose change to h point change ratios were calculated by regression equations. The results were as follows 1. The correlation of maxillary hard tissue horizontal changes and nasal soft tissue vortical changes were high and the ${\beta}_0$ for soft tissue to ADV were 0.228 at ANt, 0.257 at SNt. 2. The correlation of maxillary hard tissue and nasal soft tissue horizontal changes were high and the ${\beta}_0$ for soft tissue to ADV were 0.484 at ANt, 0.431 at SNt, 0.806 at Sn. 3. The correlation of maxillary hard tissue horizontal changes and width changes of ala of nose were high and the ${\beta}_0$ lot alar base width ratio to ADV were 0.002. 4. The DRI, Prominence of nose, Pre-Op CA is not a quantitative measure that can be used clinically to improve the predictability of vertical and horizontal nasal tip deflection. In this study, increases in nasal tip projection and anterosuperior rotation occur when there is an anterior vector of maxillary movement. These nasal changes were Quantitatively correlated to magnitude of maxillary(A point) movement.

  • PDF

Rietveld Structure Refinement of Biotite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 흑운모의 Rietveld Structure Refinement)

  • 전철민;김신애;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • The crystal structure of biotite-1M from Bancroft, Ontario, was determined by Rietveld refinement method using high-resolution neutron powder diffraction data at -26.3$^{\circ}C$, 2$0^{\circ}C$, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$. The crystal structure has been refined to a R sub(B) of 5.06%-11.9% and S (Goodness of fitness) of 2.97-3.94. The expansion rate of a, b, c unit cell dimensions with elevated temperature linearly increase to $600^{\circ}C$. The expansivity of the c dimension is $1.61{\times}10^{40}C^{-1}$, while $2.73{\times}10^{50}C^{-1}$ and $5.71{\times}10^{-50}C^{-1}$ for the a and b dimensions, respectively. Thus, the volume increase of the unit cell is dominated by expansion of the c axis as increasing temperature. In contrast to the trend, the expansivity of the dimensions is decreased at 90$0^{\circ}C$. It may be attributed to a change in cation size caused by dehydroxylation-oxidation of $Fe^{2+}$ to $Fe^{3+}$ in vacuum condition at such high temperature. The position of H-proton was determined by the refinement of diffraction pattern at low temperature (-2.63$^{\circ}C$). The position is 0.9103${\AA}$ from the O sub(4) location and located at atomic coordinates (x/a=0.138, y/b=0.5, z/c=0.305) with the OH vector almost normal to plane (001). According to the increase of the temperature, $\alpha$* (tetrahedral rotation angle), $t_{oct}$ (octahedral sheet thickness), mean distance increase except 90$0^{\circ}C$ data. But the trend is less clearly relative to unit cell dimension expansion because the expansion is dominant to the interlayer. Also, ${\Psi}$ (octahedral flattening angle) shows no trends as increasing temperature and it may be because the octahedron (M1, M2) is substituted by Mg and Fe.

  • PDF