• Title/Summary/Keyword: Rotating-types

Search Result 199, Processing Time 0.022 seconds

Electrocatalytic Oxidation of NADH at the Modified Graphite Electrode Incorporating Gold Nano Particles (금 나노입자를 회합시킨 수식된 흑연전극으로 NADH의 전기촉매 산화반응)

  • Cha, Seong-Keuck;Han, Sung-Yub
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Mercaptopropionic acid(mpa) has been used to make self-assembled monolayer(SAMs) on the surface of graphite electrode incorporating gold nano particles, which are subsequently modified with dopamine(dopa). Such modified electrodes haying types of Gr(Au)/mpa-dopa were employed in the electrocatalytic oxidation of NADH. The responses of such modified electrodes were studied in terms of electron transfer kinetics and reaction procedure in the reaction. The reaction of the surface immobilized dopa with NADH was studied using the rotating disk electrode technique and a value of $5.06{\times}10^5M^{-1}s^{-1}$ was obtained for the second-order rate constant in 0.1 M phosphate buffer(pH=7.0), which was a $EC_{cat}$ and kinetic controlled procedure. But, the modified electrodes were diffusion controlled reaction having $4.64{\times}10^{-4}cm^2s^{-1}$ of the coefficient within $10^{-3}s$ after starting the reaction.

Measurement Reliability of Axial Length of the Human Eye by using Partial Coherence Interferometry

  • Kim, Jae-Hyung;Moon, Tae Hwan;Chae, Ju Byung;Hyung, Sungmin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.546-550
    • /
    • 2014
  • To investigate the minimum near-infrared ray intensity required (quantifiable threshold value) for consistent measurements of axial length (AL) using partial coherence interferometry (PCI), we attached two polarizing lenses (PL) to two types of PCI (IOLmaster, ALscan). The near-infrared ray intensity of PCI was modified by rotating the axis of one PL at intervals of 5 degrees. The right eye of each volunteer was measured three times and the AL and signal-to-noise ratio (SNR) was recorded five times for each measurement. Reduction of light intensity was theoretically estimated using Malus' Law. AL was measured consistently with both IOLmaster and ALscan until they reached 55 degrees (1.33 % of intensity) and 60 degrees (0.77%), respectively (P = 0.343, Log-rank test). In contrast, SNR decreased as light intensity decreased. In addition, to analyze media opacities that precluded measurement of AL, we retrospectively reviewed the medical records of patients unmeasurable by PCI (ALscan) from May to November 2013. Thirty-eight of 473 eyes (8.0%) could not be measured using ALscan due to media opacities, such as severe posterior subcapsular cataract (PSC, 11 eyes), hypermature cataract (9 eyes), and vitreous hemorrhage (18 eyes). The mean grades of vitreous haze and PSC were $7.72{\pm}0.96$ and $4.45{\pm}1.04$, respectively. In conclusion, up to 0.77-1.33% of near-infrared rays decreased, and AL could be measured consistently.

An Experimental Study on the Ventilation Characteristics of a Wind-Turbine Natural Ventilator According to the Outdoor-Wind Velocity and the Indoor/Outdoor-Temperature Difference (윈드터빈 자연환기 장치의 외기풍속 및 온도차에 따른 환기특성에 관한 실험연구)

  • Han, Dong-Hun;Kim, Yeong-Sik;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • With the improvement of living standards, the ventilation for the mitigation of indoor or outdoor air-pollution problems has recently attracted a lot of attention. Consequently, the ventilation for the supply of outdoor fresh air into a room is treated as an important building-design factor. The ventilation is generally divided into the forced and natural types; here, the former can control the ventilation rate by using mechanical devices, but it has the disadvantages of the equipment costs, maintenance costs, and noise generation, while the latter is applied to most workshops due to the absence of noise and the low installation and maintenance costs. In this experimental study, the ventilation performance of a typical rotating-type natural ventilator, which is called a "wind turbine," was investigated with the outdoor-wind velocity and the indoor/outdoor-temperature difference. From the experiment results, it was confirmed that the temperature difference of $10^{\circ}C$ corresponds to the ventilation driving force with an outdoor-wind velocity of 1.0 m/s. Additionally, the intake-opening area of a building also exerts a great effect on the ventilation rates.

An Interference Coordination Technique Utilizing Sub-Arrays and Its Performance in Cellular Systems (부 어레이 빔포밍을 활용하는 간섭 제어 기법 및 셀룰러 시스템에서의 성능 평가)

  • Kang, Hosik;Lee, Donghyun;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.653-663
    • /
    • 2014
  • To cope with an increasing amount of data traffic, research efforts are being made to maximize the data rate by reducing the interference between the transmission nodes. This paper also focuses on interference control schemes utilizing antenna sub-array beam-forming. The first scheme relies on horizontal beam rotation which utilizes three types of narrow beam patterns. Different beam patterns are applied to transmit signals in rotating fashion to control the interference. The second scheme is based on user-specific sub-array beamforming, which uses the precoding matrix based on users' location and controls the amount of interference in the multi-user environment. The performance of the proposed schemes is evaluated using the computer simulation to demonstrate the performance enhancement.

Development of Automatic Inspection System for Lead Screw of Computer (컴퓨터용 Lead Screw의 자동검사 시스템 개발)

  • Bae, Jin-Ho;Ra, Seung-Woo;Yu, Pill-Sang;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4115-4120
    • /
    • 2010
  • In manual inspection of Lead Screw of computers many workers are needed to inspect samples, and its main disadvantage is that such types of inspection system not only gives low production, but also gives low perfection. Besides, in manual inspection system, the inspection cost of samples is higher than that of the automatic inspection system. Therefore, in this study to compensate these shortcomings, an automatic inspection system is developed. For the inspection of the surfaces and different dimensional parameters of computer Lead screw, a $360^{\circ}$ rotating machine vision system is developed. From the detailed analysis of the inspection results using the present developed inspection system, it is observed that the developed Lead Screw automatic inspection system is superior to those of manually inspection system.

Reactive Fields Analysis of Hybrid Combustor Under Different Arrangements of Oxidizer Injectors (하이브리드 연소기의 산화제 주입기 배열 특성에 따른 반응유동장 해석)

  • Cho Sung-Chan;Kim Soo-Jong;Lee Seung-Chul;Kim Jin-Kon;Koo Ja-Yae;Moon Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.78-88
    • /
    • 2005
  • The combustion characteristics of End-Burning hybrid combustor using different types of injector system are numerically investigated to visualize the temperature fields in the combustion chamber The basic characteristics of combustion with different O/F ratio is also analyzed in order to capture the main behavior of diffusion flame inside the swirl induced hybrid combustion chamber It was found that the arrangement of oxidizer injectors give strong effect on the temperature field dominating mixing between fuel and oxidizer. The results show that among five different oxidizer injectors arrangement, the counter flow injector has the highest mixing efficiency. However, the observed high wall temperature presence near the oxidizer injectors remains to be solved.

Flow-accelerated corrosion assessment for SA106 and SA335 pipes with elbows and welds

  • Kim, Dong-Jin;Kim, Sung-Woo;Lee, Jong Yeon;Kim, Kyung Mo;Oh, Se Beom;Lee, Gyeong Geun;Kim, Jongbeom;Hwang, Seong-Sik;Choi, Min Jae;Lim, Yun Soo;Cho, Sung Hwan;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3003-3011
    • /
    • 2021
  • A FAC (flow-accelerated corrosion) test was performed for a straight pipe composed of the SA335 Gr P22 and SA106 Gr B (SA106-SA335-SA106) types of steel with welds as a function of the flow rate in the range of 7-12 m/s at 150 ℃ and with DO < 5 ppb at pH levels ranging from 7 to 9.5 up to a cumulative test time of 7200 h using the FAC demonstration test facility. Afterward, the experimental pipe was examined destructively to investigate opposite effects as well as entrance effects. In addition, the FAC rate obtained using a pipe specimen with a 50 mm inner diameter was compared with the rate obtained from a rotating cylindrical electrode. The effects of the complicated fluid flows at the elbow and orifice of the pipeline were also evaluated using another test section designed to examine the independent effects of the orifice and the elbow depending on the distance and the combined effects on orifice and elbow. The tests were performed under the following conditions: 130-150 ℃, DO < 5 ppb, pH 7 and a flow rate of 3 m/s. The FAC rate was determined using the thickness change obtained from commercial room-temperature ultrasonic testing (UT).

Smart Roll Forming Based on Real-Time Process Data (실시간 공정데이터 기반의 스마트 롤포밍에 관한 연구)

  • Son, Jae-Hwan;Cho, Dong-Hyun;Kim, Chul-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.45-51
    • /
    • 2018
  • Roll forming refers to the production of long plate-molded products, such as panels, pipes, tubes, channels, and frames, by continuously causing the bending deformation to thin plates using rotating rolls. As the roll forming method has advantages in terms of mass production because of its excellent productivity, the size of the roll forming industry has been continuously increasing and the roll forming method is increasingly being used in diverse industrial fields as a very important processing method. Furthermore, as the roll forming method mainly depends on the continuous bending deformation of the plate materials, the time and the cost of the heterogeneous materials developed in the process are relatively large when considered from the viewpoint of plastic working because many processes are continuously implemented. The existing studies on roll forming manufacturing have reported the loss of large amounts of time and materials when the raw materials or product types were changed; further, they have stated that the use of this method can hardly guarantee the uniformity of the formed shapes and the consistency in terms of size and cannot detect all the defects occurring during the mass production and related to the dimensions. Therefore, in this research, a real-time process data-based smart roll forming method that can be applied to multiple products was studied. As a result, a roll forming system was implemented that remembers and automatically sets the changes in the finely adjusted values of the supplied quantities of individual heterogeneous materials so that the equipment setting changing time for heterogeneous material replacements or changes in the products being produced can be shortened. It also secures the uniformity of the products so that more competitive and precise slide-rail products can be mass-produced with improvements in the quality, price, and productivity of the products.

A Numerical Analysis on Effect of Baffles in a Stirred Vessel (교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The flow characteristics in a stirred tank are very useful in a wide variety of industrial applications. Generally, the flow pattern, power consumption and mixing time in stirred vessels depend not only on the design of the impeller, but also on the tanks' geometry and internal structure. In this study, the analysis of an unstable and unsteady complicated flow characteristics generated by the interaction between the baffle shape and impeller were performed using the ANSYS FLUENT LES Turbulence Model. The study compared the predictions of CFD with the interaction between two types of rotating impellers (axial and radial flows) and the shapes of three baffles. The results of the comparison verified that the design model showed a relatively efficient trend in the mixing flow fields and characteristics around the impeller and baffles during agitation.

Evaluations on Performances of a Non-Contact Torque Measurement Technique for Rotatory Machinery (회전기계용 비접촉식 토크 측정법 성능 평가)

  • KIM, YEONGHWAN;KIM, YEONGHO;CHO, GYEONGRAE;KIM, UEIKAN;DOH, DEOGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.642-647
    • /
    • 2018
  • Gas compressors are mostly driven by motors. It is important to measure the power of motors to evaluate their power efficiency, because the mechanical loads of gas compressors are always varied. In order to measure the power given to the driving motors, the torque should be measured. Manufacturers of compressors usually use the torque data to calculate the compressors qualities such as power consumption, efficiencies and failures. In general, measurements for the shaft torque of the compressors have been based upon contact types, strain gauges. In the cases of larger compressors, the contact type of strain gauges have several disadvantages such as large size and high cost. In this study, a relatively inexpensive and simple torque sensing technique that is not restricted to shaft diameter is introduced using visualization technique. Particle image velocimetry (PIV) has been adopted to complete non-contact torques measurements for rotating motors. In order to compare the performance of the newly constructed torque measurement technique, torque measurement by a transducer based on MEMS technology has been performed simultaneously during experiments.