• 제목/요약/키워드: Rotating-Shaft Design

검색결과 99건 처리시간 0.022초

유전자 알고리즘을 이용한 유연 복합재 구동축의 최적 설계 (Optimum Design of a Flexible Matrix Composite Driveshaft Using Genetic Algorithms)

  • 홍을표;신응수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.109-115
    • /
    • 2003
  • This study intends to provide an optimum design of flexible matrix composite driveshafts using a genetic algorithm. An objective function is defined as a combination of shaft flexibility, whirling stability and torsional buckling and the design variables are selected as ply angles and the shaft thickness. Results show that the genetic algorithm can successfully find an optimum solution at which the overall performance of the FMC shafts is significantly enhanced

  • PDF

고정자의 유연성을 고려한 유체베어링 지지 HDD 스핀들 계의 진동해석 (Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings Taking into Account Stator's Flexibility)

  • 임승철;전상복;한윤식;이호성;김철순
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.749-756
    • /
    • 2005
  • This paper presents vibration analyses of hard disk drive (HDD) spindle systems based on the finite element method. The systems under investigation have a cantilevered shaft rotating on hydrodynamic bearings. In particular, the influence of stator's flexibility on major modes has been taken into account in dual ways lumped and distributed-parameter model approfches. Even the latter employs relatively macroscopic elements instead of extremely fine ones Popular in commercial codes. In order to prove the effectiveness of such formulated models, two types of HDD prototypes featuring different hub and stator structures are selected as examples. Compared to the first, the second type has a reinforced stator that would raise the natural frequency of the hub's translational (or sideway) mode. Both free and forced vibration characteristics are computed, and subsequently compared with the experimental data. It is our conclusion that Particularly the Proposed distributed model method is an efficient design tool for state-of-the-art HDD spindle systems.

500W급 초소형 가스터빈 개발을 위한 압축기 성능 평가 (Performance Evaluation of Compressor to Develop 500W Class Ultra-Micro Gas Turbine)

  • 서정민;박준영;최범석;박무룡
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.51-57
    • /
    • 2012
  • Performance evaluation of a compressor is conducted to develop 500W class ultra-micro gas turbine (UMGT) for power generation. The performance evaluation is essential to check the performance of the components of UMGT, a radial turbine, a centrifugal compressor, an angular combustor and a shaft, which have been already designed in previous researches. The purpose of this study is to introduce the development process of the performance testing equipments of the UMGT and to present the results of compressor performance test. For the performance evaluation of the compressor, two test equipments are developed and the initial test equipment uses commercial static air bearings with long shaft. In the improved test equipment, static air bearing is improved to increase rotating speed and compressed nitrogen gas is used for utility gas of the static air bearing to supply compressed air in a stable and steady way. To increase rotating speed to 320,000 rpm, 80% speed of design speed, compressed air is provided to the turbine. The performance map of the compressor with the 50%, 60%, 70%, 80% speed of design point is presented. The results of the performance test of compressor show a good agreement with the results of 3D CFD.

밸런스샤프트의 회전체역학 해석 (Rotordynamic Analysis of Balance Shafts)

  • 노종원;신범식;박흥준;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.531-536
    • /
    • 2006
  • In four cylinder engine, the second order inertia force occurs due to the reciprocating parts of the cylinder. Because the magnitude of the inertia force is proportional to a square of the angular velocity of crank shaft, engine gets suffered from vibration excited by unbalanced inertia force in high speed. This vibration excited by the unbalanced inertia force can be canceled by applying a balance shaft. Balance shaft has one or more unbalance mass and rotates twice quickly than the crank shaft. In this paper, an unbalanced force caused by the rotating of unbalance mass of balance shafts was calculated. The directional equivalent stiffness and damping coefficients of the journal bearing of balance shafts was calculated. Equations of rotational vibration modes were derived using directional stiffness and damping coefficients. The dynamic stability of balance shafts was analyzed and evaluated for two type models using the equivalent stiffness and damping coefficients. An efficient procedure to he able to evaluate dynamic stability and design optimal balance shaft was proposed.

  • PDF

초고속 스핀들의 모델 개선법 (Model Updating of High-Speed Spindle)

  • 박기범;정원지;이춘만
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.7-12
    • /
    • 2008
  • In the design of modem rotating machinery, it is often necessary to increase the performance of rotor-bearing system. Since a critical speed range influences the performance and safety of the whole system, it should be necessary to constrain the critical speed and thus resonance response in design process to result in large vibration. Consequently the minimization of resonance response amplitudes within the operation range of the rotor system becomes the most primary design objective. In this paper, based on the assumption that the external shape of rotating-shaft, bearing supporting positions and etc, the natural frequency analysis of spindle is performed by ANSYS $10.0^{(R)}$ Optimum design is conducted using the RBF model.

자기장을 이용한 비접촉 토크센서설계

  • 송중록;조종두;반강;김재민;김웅지
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1087-1090
    • /
    • 2007
  • A wireless magnetic torque sensor is utilized to measure the torque generated in the rotating shaft in magnetic field without connecting to the shaft by any wire. In this study, a new wireless magnetic torque sensor was introduced. The structure of the sensor was explained detailed as well as its operation principle. Resulting from the torque measurement experiment results, the sensor was proven to measure the generated torque effectively. Compared with traditional contact torque sensor, the wireless one has low cost and good environment adaptation ability. Moreover, the intractable wrapping wires around the shaft are removed in this design. Hence the wireless torque sensor may be expected as a possible sensing device for many applications, such as the electric assisting rotation system in automobiles, the torque sensing system in motors, the arm rotation system in robotics and so on.

  • PDF

有限要素法에 의한 推進軸系의 광振動計算에 관한 硏究 (Calculation of Transverse Vibration of Ship`s Propulsion Shaftings by the Finite Element Method)

  • 전효중;김희철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.2-18
    • /
    • 1979
  • Due to increasing ship dimensions and installed propulsive power, resonance frequencies of the propeller shaft system tend to decrease and they can appear in some cases within the operating range of the shaft revolution. For calculation of transverse shaft vibrations, various methods have been proposed but as they are mainly for approximate calculation, no contented results are obtained. For fairly accurate estimation of resonance frequencies in the design stage, one can use transfer matrix method of the finite element method and former is rather prefered in ordinary cases. In this study, the finite element method which is utilized for calculation of the propulsion shaft alignment, is introduced to derive the vibration equation of the ship's propulsion shaftings. The digital computer program is developed to solve the above equation, and the details of preparing the input data are described. The method presented in the underlying report was applied to the shafting of ship which has a lignumvitae bearing to verify its reliability and the results of calculation and those of the measurements on rotating shaft show a good agreement. Calculating methods of exciting of forces and damping forces are also discussed for future work.

  • PDF

실 엔진 상태 캠 구동 토크 측정 (Measurement of the Torque for Driving Cam Shaft in Real Engine Environments)

  • 강승표;고상근;하경표
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.242-247
    • /
    • 2007
  • Energy savings and environmental protection policies have been the general trend in the engine design. The friction power loss associated with the cam mechanism has become important. But it is difficult to measure the torque of rotating valvetrain in real engine environment because most of conventional torque meters are axial type. The objective of this paper is to develop new equipment which can be installed in a rotating camshaft. It uses strain gages to measure the elastic deformation of torque sensor which replaces the cam sprocket. It includes telemetry to transmit torque data via Bluetooth and induction power system to provide adequate power to rotating torque meter. The developed torque meter has good linearity and thermostability. It was installed in a real engine, and successfully measured the valvetrain torque.

Optimum Shape Design of a Rotating-Shaft Using ESO Method ESO 법을 이용한 회전축의 형상최적화

  • Yang, Bo-Suk;Kim, Yong-Han
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.360-364
    • /
    • 2001
  • 본 논문에서는 최근의 진화적 구조최적화(ESO) 전략을 회전축의 형상최적화에 적용하였으며, 각 계산 스텝마다 단위 유한요소의 크기를 변경함으로써 기존의 방법보다 빠르고 정확한 최적형상에 수렴하는 새로운 방법을 제시하였다. 축요소의 직경을 시스템 설계변수로 하였으며, 축중량의 감소, 공진배율(Q-factor)의 감소 및 충분한 위험속도의 분리여유를 갖도록 목적함수를 설정하였다. 불평형응답 및 굽힙응력의 구속조건을 부가하였으며, 목적함수에 대한 설계변수의 감도해석을 수행하였다. 전동기축계에 대한 적용 결과로부터 주파수와 동적 구속조건하의 로터베어링 시스템에 대한 축 형상 최적화에 ESO법이 효과적으로 이용될 수 있음을 확인하였다.

  • PDF

Design Consideration of Back-EMF Constant for 3-D.O.F. Spherical PM Motor

  • Go, Sung-Chul;Kang, Dong-Woo;Im, Jong-Bin;Lee, Ju;Won, Sung-Hong;Lim, Seung-Bin
    • Journal of Magnetics
    • /
    • 제15권2호
    • /
    • pp.78-84
    • /
    • 2010
  • A 3-D.O.F. spherical PM motor has 3 degrees of freedom in its motion by tilting and rotating of a shaft, which can be applied in a range of fields. The back-EMF is proportional to the field flux and angular velocity. The back-EMF constant in conventional rotating machine has a uniform value. However, in a spherical PM motor, the back-EMF constant of the coils varies according to the tilting conditions regardless of whether the angular speed is constant. Consideration of the back-EMF constant is useful for designing 3-D.O.F. spherical PM motors. In this study, the back-EMF constant of the spherical PM motor was considered carefully.