• 제목/요약/키워드: Rotating and pipe system

검색결과 36건 처리시간 0.024초

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability Analysis of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1169
    • /
    • 2007
  • In this paper, the dynamic stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influence of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating cantilever pipe are derived by using extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the rotating angular velocity of a pipe. Also, the critical flow velocity and stability maps of the rotating pipe system for the variation each parameter are obtained.

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 김동진;윤한익;손인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.356-359
    • /
    • 2007
  • In this paper, the stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influences of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived using the Euler beam theory and the Lagrange's equation. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the angular velocity and the depth of crack. Also, the critical flow velocity and stability maps of the rotating pipe system as a function of mass ratio for the changing each parameter are obtained.

  • PDF

끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성 (Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.

유체유동 회전 외팔 파이프의 안정성 해석 (Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.701-707
    • /
    • 2007
  • In this paper the vibration system is composed of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Generally, the system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. The influence of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity ($u_{cr}$) is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) is always occurred in the second mode of the system.

유체유동 회전 외팔 파이프의 안정성에 미치는 끝단질량의 영향 (Influence of Tip Mass on Stability of a Rotating Cantilever Pipe Conveying Fluid)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.976-982
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and tip mass. The equation of motion is derived by using the Lagrange's equation. The system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of a rotating angular velocity, mass ratio, the velocity of fluid flow and tip mass on the stability of a cantilever pipe by the numerical method are studied. The critical flow velocity for flutter is proportional to the angular velocity and tip mass of the cantilever pipe. Also, the critical flow velocity and stability maps of the pipe system are obtained by changing the mass ratios.

회전하는 유체이송 외팔 파이프의 동특성 해석 (The Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe and the flow in the pipe. The equation of motion is derived by using Lagrange equation. The influences of the rotating angular velocity and the velocities of fluid flow in the pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by numerical method. The tip-amplitude of axial vibration and maximum tip-deflection of axial direction of cantilever pipe are directly proportional to the velocity of fluid and rotating angular velocity of pipe In the steady state. respectively The bending tip-amplitude of cantilever pipe is inversely proportional to the velocity of fluid in the steady state. When the rotating angular velocity is 5 rad/s, the velocity of fluid increase with increasing the natural frequency of axial vibration at second mode and third mode, but the natural frequency axial direction of first mode is decreased. The natural frequency of lateral direction is decreased due to increase of the rotating angular velocity. It identifies that the Influence of velocity of fluid give much variation lower mode of vibration in lateral direction. And the Influence of velocity of fluid give much variation higher mode of vibration in axial direction.

끝단질량을 가진 유체유동 회전 외팔 파이프의 고유진동수 해석 (Natural Frequency of Rotating Cantilever Pipe Conveying Fluid with Tip Mass)

  • 윤한익;손인수
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.150-157
    • /
    • 2005
  • The vibration system in this study is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. The influences of the rotating angular velocity and the velocity of fluid flow on the natural frequencies of a cantilever pipe have been studied by the numerical method. The effects of a tip mass on the natural frequencies of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the natural frequency of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe in both axial direction and lateral direction.

유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향 (The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;최창수;손인수
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

유체유동 회전 외팔 파이프의 동특성 및 안정성 해석 (Dynamic Characteristics and Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid)

  • 김동진;윤한익;손인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1185-1190
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Also, the equation of motion is derived applying a modeling method that employs hybrid deformation variables. Generally, the system of pipe conveying fluid becomes unstable by flutter. So, we studied about the influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method. The influences of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity$(u_{cr})$ is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) always occur in the second mode of the system.

  • PDF

유체유동 회전 외팔파이프의 안정성에 미치는 끝단질량의 영향 (Stability Analysis of Cracked cantilever beam Subjected to Follower force)

  • 윤한익;손인수;김동진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.121-126
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived applying a modeling method that employs hybrid deformation variables. 'TI1e influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe are studied by the numerical method. The effect of tip mass on the stability of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified.

  • PDF