• 제목/요약/키워드: Rotating Radius

검색결과 157건 처리시간 0.025초

자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석 (Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump)

  • 김보형;정원영;백홍길;강동진;정진태
    • 한국소음진동공학회논문집
    • /
    • 제23권7호
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Dynamic analysis of a beam subjected to an eccentric rolling disk

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.455-470
    • /
    • 2013
  • This paper presents a theory concerning the beam element subjected to an eccentric rolling disk (or simply called the eccentric-disk-loaded beam element) such that the dynamic responses of a beam subjected to an eccentric rolling disk with its inertia force, Coriolis force and centrifugal force considered can be easily determined. To this end, the property matrices of an eccentric-disk-loaded beam element are firstly derived by means of the Lagrange's equations. Then, the overall property matrices of the entire vibrating system are determined by directly adding the property matrices of the eccentric-disk-loaded beam element to the overall ones of the entire beam itself. Finally, the Newmark direct integration method is used to solve the equations of motion for the dynamic responses of a beam subjected to an eccentric rolling disk. Some factors relating to the title problem, such as the eccentricity, radius and rotating speed of the rolling disk, and the Coriolis force and centrifugal force induced by the rolling disk are investigated. Numerical results reveal that the influence of last factors on the dynamic responses of the pinned-pinned beam is significant except the centrifugal force.

Isotropic Configurations of Omnidirectional Mobile Robots with Three Caster Wheels

  • Kim, Sung-Bok;Lee, Jae-Young;Kim, Hyung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2066-2071
    • /
    • 2003
  • In this paper, we identify the isotropic configurations of an omnidirectional mobile robot with three caster wheels, depending on the selection of actuated joints. First, We obtain the kinematic model of a caster wheeled omnidirectional mobile robot(COMR) without matrix inversion. For a given task velocity, the instantaneous motion of each wheel is decomposed into two orthogonal instantaneous motions of the steering and the rotating joints. Second, with the characteristic length introduced, we derive the isotropy conditions of a COMR having $n({\ge}3)$ actuated joints, which are imposed on two Jacobian matrices, $A{\in}R^{n{\times}3}$ and $B{\in}R^{6{\times}6}$. Under the condition of $B{\propto}I_6$, three caster wheels should have identical structure with the length of the steering link equal to the radius of the wheel. Third, depending on the selection of actuated joints, we derive the conditions for $A^t$ $A{\propto}I_3$ and identify the isotropic configurations of a COMR. All possible actuation sets with different number of actuated joints and different combination of rotating and steering joins are considered.

  • PDF

점성유체 중에 회전하는 스프링의 추진적 거동에 관한 수치해석 모델 (Numerical Model of Propulsive Behavior of a Rotating Spring in Viscous Fluid)

  • 최원열;서용권;강상모
    • 대한기계학회논문집B
    • /
    • 제39권6호
    • /
    • pp.497-504
    • /
    • 2015
  • 본 논문에서는 박테리아 편모를 모사한 스프링 모델을 이용하여 박테리아의 편모의 추진적 거동에 관한 연구를 수행하였다. 본 해석에서는 상용프로그램을 사용하였으며, 별도의 회전영역 설정에 따른 수치기법의 타당성 확인과 더불어 파라미터 연구를 수행하였다. 수치해석 결과는 전반적으로 Resistive force theory와는 잘 일치하지 않았지만, Slender body theory와는 잘 일치하였다. 그리고 스프링의 회전속도, 피치, 나선반경 및 유체의 점성의 영향을 확인하였다. 또한 벽과의 거리에 따른 효과도 분석하였다.

Stability Analysis of the Karman Boundary-Layer Flow

  • Lee, Yun-Yong;Hwang, Young-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권1호
    • /
    • pp.50-63
    • /
    • 2002
  • The Karman boundary-layer has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type I instability. This early transition is due to the excitation of the Type II. Presented are the neutral stability results concerning these instabilities by solving newly formulated stability equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from ${Re}_{c.1}$=285.3 to 270.2 and the value corresponding to Type II from ${Re}_{c.2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved fro)m $k_1$=0.378 to 0.386 for Type I; from $k_2$=0.279 to 0.385 for Type II. For Type II, the upped limit of wave number and azimuth angle is $k_u$=0.5872, $\varepsilon_u$=$-17.5^{\circ}$, while its lower limit is near $k_u$=0, $\varepsilon_u$=$-28.4^{\circ}$. This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

경사진 기계평면시일의 변형거동 특성 해석 (Analysis characters of distortion of inclined mechanical face seal)

  • 조승현;고영배;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.341-349
    • /
    • 2001
  • Heat distortion of the non-contacting mechanical face seal is affected by friction heat between primary seal and seal sheet. The fluid or gas in mechanical face seal maintains operating gap, cooling friction heat and lubricates at the face of seal. So we designed face of seal for inclined face. inclined face of seal improves fluid or gas flow at the face of seal and it increases circumferential velocity at outer radius of the seal so temperature of the seal is decreased by low heat transfer coefficient at there. In this paper, inclined face seal are analysed numerically using finite element method for proof improve inclined face seal performance. Angle of the incline face used for FEA is from 50$^{\circ}$to 90$^{\circ}$and for explaining the effects of inclined face in seal, we get temperature, face distortion, and stress in the seal with variable operating gap and rotating speeds. Result of analysis shows that angle of the incline face is 60$^{\circ}$come to good thermal distortion characteristics.

  • PDF

쿨롬 법칙과 영상법을 이용한 와전류 브레이크의 제동토크 해석 (The Braking Torque Analysis of Eddy Current Brake with the Use of Coulomb′s law and the Method of Image)

  • 이갑진;박기환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권9호
    • /
    • pp.431-437
    • /
    • 2001
  • Since the eddy current problem usually depends on the geometry of the moving conductive sheet and the shape of the pole projection area, there is no general method to find out its analytical solution. The analysis of the eddy current in a rotating disk is performed in the case of time-invariant field to find its analytical solution. As a method to solve the eddy current problem, the concept of the Coulomb charge and image method are proposed with the consideration of the boundary condition. Firstly, the line charge is obtained from the volume charge generated in the rotating disk and Coulomb's law is applied. Secondly, the finite disk radius is considered by introducing an imaginary eddy current to satisfy the boundary condition that the radial component of the eddy current is zero at the edge of the relating disk. Thirdly, the braking torque is calculated by applying Lorentz force law. Finally, the computed braking torque is compared with the measured one As a result, it can be said that the proposed model presents fairly accurate results in a low angular velocity range although a large error is observed as the angular velocity of the disk increases.

  • PDF

Karman 경계층 유동의 안정성에 관한 연구 (Stability of the K rm n Boundary Layer Flow)

  • 황영규;이윤용
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.771-781
    • /
    • 2000
  • The Karman boundary-layer, has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type 1 mode of instability. This early transition is due to the excitation of the Type II mode. Presented are the neutral stability results concerning these modes by solving new formulated vorticity equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from Rec,! =285.3 to 270.2 and the value corresponding to Type II is from $Re_{c,2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved from $k_1$ =0.378 to $k_1$ =0.389 for Type I; from $k_2$ =0.279 to $k_2$=0.385 for Type II. For Type II, the upper limit of wave number and azimuth angle is $k_U$=0.5872,$varepsilon_U=-18^{\circ}$ , while its lower limit is$k_L$ =0.05, $varepsilon_L=-27^{\circ}$ This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

  • PDF

회전코일 와전류신호를 이용한 증기발생기 곡관형 튜브의 축방향노치 신호의 특성 (Characteristics of Eddy Current Signals of Axial Notches in Steam Generator U-bend Tubes using Rotating Pancake Coils)

  • 김창수;문용식
    • 한국압력기기공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.7-12
    • /
    • 2012
  • Steam generator tubes are critical boundary of the primary and secondary side in nuclear power plants. Eddy current testing is commonly used as the method of non-destructive testing for the safety and integrity of steam generator tubes in the nuclear power plants. Changes in the geometric shape act as a stress concentration factor likely to cause a defect during the steam generator operation. The mixed-signals with the geometric shape are distorted and attributes that are difficult to detect signals. An example is bending stress due to compression process at a U-bend occurring in the intrados region which has a small radius of curvature. The resulting change in the geometric shape may lead to a dent like occurrences. The dent can cause stress concentration and generates stress corrosion cracks. In this study, the steam generator tubes of nuclear power plant were selected to study for analysis of mixed-signal containing dent and stress corrosion cracks.

풍력타워의 효율적인 설계변수에 대한 실험적 연구 (An Experimental Study for Efficient Design Parameters of a Wind Power Tower)

  • 조수용;최상규;김진균;조종현
    • 한국항공우주학회지
    • /
    • 제46권2호
    • /
    • pp.114-123
    • /
    • 2018
  • 풍력타워는 수직형 풍력터빈의 성능을 향상하기 위하여 사용되어진다. 하지만 풍력타워의 성능은 내부반경, 외부반경, 안내벽의 개수 등의 설계변수에 의하여 좌우된다. 따라서 본 연구에서는 풍력타워의 효율적인 설계변수를 찾기 위하여 실험적인 연구를 수행하였다. 실험에 사용된 풍동의 시험부는 높이 2 m, 폭 2.2 m이며, 7개의 안내벽을 가진 풍력타워의 한 층을 모델로 제작하고, 그 내부에 풍력터빈을 설치하였다. 다양한 설계변수에 대하여 실험을 하기 위하여 세 가지 종류의 안내벽을 사용하였다. 상대적인 성능평가를 위하여 동일한 입구속도에서 풍력타워를 원주방향으로 회전이동하여 출력계수를 측정하였다. 실험의 결과에서 풍력타워의 내부반경과 풍력터빈의 회전반경과의 간격이 풍력터빈의 성능을 향상하는데 가장 큰 영향을 미치는 변수임을 보였다.