• Title/Summary/Keyword: Rotating Cylinder

Search Result 219, Processing Time 0.023 seconds

CHANGE OF CHANNEL-FLOW TOPOLOGY BY A STREAMWISE-PERIODIC ARRAY OF ROTATING CIRCULAR CYLINDERS (주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동 토폴로지 변화)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.17-24
    • /
    • 2013
  • In this study, we consider the characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. An immersed boundary method was employed to facilitate implementing the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to increase of mean friction on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of rotating cylinders to modify flow topology, which might be used to enhance heat transfer on the channel walls.

Numerical Simulation on Laminar Flow past a Rotating Circular Cylinder (회전하는 원형 주상체 주위의 층류 유동장의 수치 시뮬레이션)

  • MooN JIN-KooK;PARK JONG-CHUN;YOON HYUN-SIK;CHUN HO-HWAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.222-228
    • /
    • 2004
  • The effects of rotation on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. We obtained the numerical solutions for unsteady two-dimensional governing equation for the flow using two different numerical schemes. One is an accurate spectral method and another is finite volume method. Above all, the flow around a stationary circular cylinder is investigated to understand the basic phenomenon of flow separation, bluff body wake. Also, the validation of our own codes, expecially based on FVM, is carried out by the comparison of results obtained from our simulations using two different schemes and previous numerical and experimental studies. By the effect of rotation, the mean lift increases and drag deceases, which well represent the previous study.

  • PDF

A Study on the Helical Flow of Newtonian and non-Newtonian fluid (뉴튼 및 비뉴튼 유체의 헬리컬 유동에 관한 연구)

  • Kim Young-Ju;Kim Chul-Soo;Hwang Young-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • This study concerns the characteristics of helical flow in a concentric and eccentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and $0.2\%$ aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of $0\~500$ rpm. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. This study shows the change of skin friction coefficient and wall shear stress corresponding to the variation of rotating speed of the inner cylinder, radius ratio, eccentricity, and working fluids.

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

Meridional Circulations in a Sliced Cylinder (기울어진 회전 원판에 의한 원통형 용기내의 자오면 유동의 크기에 관한 연구)

  • KIM Jae Won;LIM Hong Sick
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.52-57
    • /
    • 1996
  • Mixing is most important for developing an electric washer which transforms angular momentum from rotating solid wall to laundry clothes inside it. For magnification of this mixing effect, some inventions are introduced to washing machine system, i. e., washing plate, washing rod, and even for washing cap in a model of a Korean manufacture. However, the previous efforts show dissatisfaction up till now. In this paper, a triumph to enhance mixing effects to increase washing performance is presented and verified by numerical investigation. The present model to simulate a washing tub is the simple circular cylinder with two endwall disks which is completely filled with a viscous liquid. The present improvement is to change mounting position of a bottom disk of the model cylinder. Therefore, the aim of this work just proposes a new idea, which is numerically inspected, to a producer of washing machine, In detail, this invention is alternating the mounting position of a rotating bottom disk. Actually skewed pulsator is placed in steady of a flat disk, so the two endwall disks at top and bottom are not in parallel. The angle between an inclined bottom disk and the horizontal plane is fixed as 5 degree and physical domain to consider poses a sliced cylinder. Flow fields in both a right circular cylinder and the present improved model are fully depicted by numerical integration on a body fitted nonorthogonal regular uniform grid system. Numerical data to explain flow structure are plotted for understanding of the effects of the inclined disk. Also enhanced mixing effects by the inclined rotating disk are gauged by accurate numerical data used in this work.

  • PDF

A Study on the Rotating Flow in an Annulus (환형관내 회전유동에 관한 연구)

  • 김영주;우남섭;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.153-158
    • /
    • 2003
  • This study concerns the characteristics of helical flow in a concentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and 0.2% aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of 0∼500rpm. The effect of rotation on the skin friction is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime.

  • PDF

Numerical Study of Turbulent Mass Transfer around a Rotating Stepped Cylinder (후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달의 전산해석)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2378-2383
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream the step. Main focus was placed on the correlation between turbulent fluctuation and concentration field. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with the same flow configuration.

  • PDF

Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number (회전하는 원형단면 실린더 주위의 저 레이놀즈수 난류유동에 대한 직접수치모사)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1083-1091
    • /
    • 2005
  • Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.

Turbulent Mass Transfer Around a Rotating Stepped Cylinder - Flow-Induced Corrosion - (후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달 - 유동유발 부식 -)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.799-806
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of DNS of turbulent flow in Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream of the step. Main focus was placed on the correlation between turbulence and mass transfer. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with a similar flow configuration.

Direct Numerical Simulation of Mass Transfer in Turbulent new Around a Rotating Circular Cylinder ( I ) - At Sc=1670 - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 직접수치모사 ( I ) - 높은 Schmidt 수에 대하여 -)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.837-845
    • /
    • 2005
  • In this paper, an investigation on high-Schmidt number (Sc=1670) mass transfer in turbulent flow around a rotating circular cylinder is carried out by Direct Numerical Simulation. The concentration field is computed for three different values of low Reynolds number, namely 161, 348 and 623 based on the cylinder radius and friction velocity. Statistical study reveals that the thickness of Nernst diffusive layer is very small compared with that of viscous sub-layer in the case of high Sc mass transfer. Strong correlation of concentration field with streamwise and vertical velocity components is observed. However, that is not the case with the spanwise velocity component. Instantaneous concentration visualization reveals that the length scale of concentration fluctuation typically decreases as Reynolds number increases. Statistical correlation between Sherwood number and Reynolds number is consistent with other experiments currently available.