• Title/Summary/Keyword: Rotating Beam

Search Result 311, Processing Time 0.032 seconds

A Study on Automatic Seam Tracking using Vision Sensor (비전센서를 이용한 자동추적장치에 관한 연구)

  • 전진환;조택동;양상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1105-1109
    • /
    • 1995
  • A CCD-camera, which is structured with vision system, was used to realize automatic seam-tracking system and 3-D information which is needed to generate torch path, was obtained by using laser-slip beam. To extract laser strip and obtain welding-specific point, Adaptive Hough-transformation was used. Although the basic Hough transformation takes too much time to process image on line, it has a tendency to be robust to the noises as like spatter. For that reson, it was complemented with Adaptive Hough transformation to have an on-line processing ability for scanning a welding-specific point. the dead zone,where the sensing of weld line is impossible, is eliminated by rotating the camera with its rotating axis centered at welding torch. The camera angle is controlled so as to get the minimum image data for the sensing of weld line, hence the image processing time is reduced. The fuzzy controller is adapted to control the camera angle.

  • PDF

Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section (회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

Vibration Analysis of a Rotating Composite Shaft (복합재료 회전축의 진동해석)

  • Kim, Won-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.361-365
    • /
    • 2001
  • Laboratory tests are conducted to validate the mechanical model of a filament-wound composite shaft. Also, design charts are produced by validated analytical calculations based on the Timoshenko beam model of a layered steel/composite structure. The major results found are that steel/composite hybrid shafts can lead to better dynamic and static performances over steel or pure composite shafts of the same volume, and the most effective composite structures contain some steel in the form of a tubular core. These results can be used in the design process of composite boring bars and automotive drive shafts.

  • PDF

Laser doppler velocimeter using the self-mixing effect of a $CO_2$ laser (산란광의 되먹임을 이용한 $CO_2$ 레이저 도플러 속도 측정)

  • 최종운;김용평;김윤명
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.157-161
    • /
    • 1996
  • A simple laser Doppler velocimeter(LDV) using a $CO_2$ laser with its self-mixing effect has been developed. We measured the laser power which was modulated by Doppler frequency, when monochromatic laser light was focused to a moving target. The Doppler-shifted frequency was controlled by changing rotating speed of the turntable or the cosine of the angle between the direction of the laser beam and that of the rotating velocity.

  • PDF

Vibration Analysis of a Multi-Stage Rotating Shaft Shape (다단 회전축계 형상의 진동 연구)

  • Song, OhSeop;Park, Sangyun;Kang, Sunghwan;Seo, Jungseok;Kim, Sunhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.730-735
    • /
    • 2013
  • This paper contains various vibration analysis of multi-stage shaft shape such as the bending, torsional and axial vibration. The shaft system is modeled as Timoshenko beam with the transverse shear and rotary inertia effect and the equation of motion is derived by Hamilton's principle with considering clamped-free boundary condition. Then, eigenvalue problem of discrete equation of motion for multi-stage shaft model is solved and got results of the natural frequency through the numerical analysis. Obtained numerical analysis results through Matlab program were compared with those of FEM analysis to verify the results. This study suggests that design of shaft system be consider torsional and axial vibration as well as bending vibration.

  • PDF

Finite Element Analysis of Vibration of HDD Disk-Spindle System with Rigid Complex Spindle and Flexible Shaft (복잡한 형상의 강체 스핀들과 유연축을 고려한 HDD 디스크-스핀들 계의 고유진동 유한요소해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.784-789
    • /
    • 2000
  • Equations of motion are derived and solved using the finite element method substructure synthesis for the disk-spindle system with rigid spindle and flexible shaft. The disk is modeled as a flexible spinning disk by Kirchhoff plate theory and von Karman nonlinear strain. The spindle supporting the flexible disk is modeled as a rigid body to consider its complex geometry. The stationary shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam, and the ball bearings are modeled as the stiffness matrix with 5 degrees of freedom. Developed theory is applied to analyze the vibration characteristics of a 3.5" HDD and a 2.5" HDD, respectively, and modal tests are performed to verify the simulation results. This paper shows that the developed theory can be effectively applied to the rotating disk-spindle system with the spindle of complex shape.

  • PDF

Body action impacts the stability of nanomedicine tools in the drug delivery

  • Peng Zou;Wei Zhao;Jinpeng Dong;Yinyin Cao
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.247-259
    • /
    • 2023
  • Muscle strength and hypertrophy are equivalent when low-intensity resistance exercise is paired with blood flow restriction. This paper deals with the impact of physical exercise in the form of body activities on drug delivery using nanodevices. The body's actions impact the blood flow since the nano drug delivery devices are released into the bloodstream, and physical exercise and all the activities that change the blood flow influence the stability of these nanodevices. The nanodevice for the drug delivery purpose is modeled via nonuniform tube structures based on the high-order beam theory along with the nonlocal strain gradient theory. The nanodevice is made by a central nanomotor as well as two nanoblade in the form of truncated conical nanotubes carrying the nanomedicine. The mathematical simulation of rotating nanodevices is numerically solved, and the effect of various parameters on the stability of nanodevices has been studied in detail after the validation study.

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.

Development of a Measurement System for Axial-symmetric Objects Using Vision Sensor (시각센서를 이용한 축대칭 물체 측정 시스템 개발)

  • Lee, S.R.;Kim, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.34-41
    • /
    • 1997
  • The dimension measurement problem of products has been a major concern in the quality control in the industrial fields. A non-contacting measurement system using the vision sensor is proposed in this paper. The system consists of a CCD camera for the image capture, a frame grabber for the acquired image processing, a laser unit for the illumination, scanning unit for the measurement, and a personal computer for the geometry computation. The slit beam which is generated by passing the laser beam through a cylin- drical lens is fired to the axial-symmetric object on the rotating plate. The image of objects reflected by the laser slit beam, acquired by the CCD camera, becomes much brighter than the other parts of objects. After the histogram of brightness for the captured image is calculated, low intensity pixels are filtered out by threshold method. The performance of proposed measurement system is obtained for several different axial symmetric objects. The proposed system is verified as a good tool for measuring axial-symmetric parts in a limited condition with a minor investment cost.

  • PDF

Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser (고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화)

  • Kim, Jong-Do;Kil, Byung-Lea;Kang, Woon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.