• Title/Summary/Keyword: Root numbers

Search Result 267, Processing Time 0.027 seconds

An Improved Newton-Raphson's Reciprocal and Inverse Square Root Algorithm (개선된 뉴톤-랍손 역수 및 역제곱근 알고리즘)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.46-55
    • /
    • 2007
  • The Newton-Raphson's algorithm for finding a floating point reciprocal and inverse square root calculates the result by performing a fixed number of multiplications. In this paper, an improved Newton-Raphson's algorithm is proposed, that performs multiplications a variable number. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal and inverse square tables with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal and inverse square root unit. Also, it can be used to construct optimized approximate tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.

Studies on the growth of Korea Lawn Grass (Zoysia japonica Steud.)in Reponse to Nitrogen Application, Clipping Treatment and Plant Density (질소시용, 예초 및 재식밀도가 한국잔디(Zoysia Japonica Steud)의 생육에 미치는 영향)

  • Sim, Jae-Seong
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.61-113
    • /
    • 1987
  • The increasing emphasis placed on the production of fine turf for lawns, golf courses, parks, and other recreational sites has led to many unsolved problems as to how such turf could be best established and mainteined. For this purpose, a series of experiments were conducted under con ditions of pot and field. The results obtained were as follows EXPERIMENT I. The effect of nitrogen fertilizer and clipping interval on Zoysia japonica. 1. Increasing the rate of nitrogen and frequent clipping increased tiller number of Zoysis japonica and the maximum number of tillers were obtained from 700 kg N application and freqnent clippings (10 days interval ) in October. Treatment of 350kg N with 10 days clipping interval increased tillers much more than those of 700 kgN with 20 and 30 days clipping intervals. 2. The average number of green leaves occurred during the growth period maximized by applying 700 kg N and clipping 10 days interval. 3. Increasing tiller numbers significantly decreased tops DM weight per tiller by clipping plants at interval of 10 and 20 days, irrespective of nitrogen applied, and with nil N, at the interval of 30 days. By applying 700 kg N, however, top DM weight per tiller increased as the number of tillers increased consistently. 4. The highest top DM weight was achieved from late August to early September by applying 350 and 700kgN. 5. During the growth period, differences in unders ( stolon + root ) DM weight occurred bynitrogen application were found between nil N and two applied nitrogen levels, whereas, at the same level of nitrogen applied, the increase in stolon DM weight enhanced by lengthening the clipping interval to 30 days. 6. Nitrogen efficiency to green leaves, stolon nodes and DM weight of root with high nitrogen was achieved as clipping interval was shortened. 7. By increasing fertilizer nitrogen rate applied, N content n the leaves and stems of Zoysiajaponica was increased. On the other hand, N content in root and stolon had little effect onfertilizer nitrogen, resulting in the lowest content among plant fractions. The largest content of N was recorded in leaves. Lengthening the clipping interval from 10 or 20 to 30 days tends to decrease the N content in the leaves and stems, whereas this trend did not appeared in stolon androot. 8. A positive correlations between N and K contents in tops and stolon were established andthus K content increased as N content in tops and stolon increased. Meanwhile, P content was not affected by N and clipping treatments. 9. Total soluble carbohydrate content in Zoysia japonica was largest in stolon and stem, and was reduced by increasing fertilizer nitrogen rate. Reduction in total soluble carbohydrate due to increased nitrogen rate was severer in the stolons and stems than in the leaves. 10. Increasing the rate of nitrogen applied increased the number of small and large vascular bundles in leaf blade, but shortened distance among the large vascular bundles. Shortening the clipping interval resulted in increase of the number of large vascular bundles but decrease ofdistance between large vascular bundles.EXPERIMENT II. Growth response of Zoysia japonica imposed by different plant densities. 1. Tiller numbers per unit area increased as plant density heightened. Differences in num ber between densities at higher densities than 120 D were of no significance. 2. Tiller numbers per clone attained by 110 days after transplanting were 126 at 40D,77 at 80D, 67 at 120D, 54 at 160D, and 41 at 200D. A decreasing trend of tiller numbers per clone with increasing density was noticable from 100 days after transplanting onwards. 3. During the growth period, the greatest number of green leaves per unit area were attainedin 90days after transplanting at 160D and 200D, and 100 days after transplanting at 40D, 80Dand 120D. Thus the period to reach the maximum green leaf number with the high plantdensity was likely to be earlier that with the low plant density. 4. Stolon growth up to 80 days after transplaning was relatively slow, but from 80 daysonwards, the growth quickened to range from 1.9 m/clone at 40D to 0.6m/clone at 200Din 200 days after transplanting, these followed by the stolon node produced. 5. Plant density did not affect stolon weight/clone and root weight/clone until 80 daysafter transplanting. 6. DM weight of root was heavier in the early period of growth than that of stolon, butthis trend was reversed in the late period of growth : DM weight of stolon was much higherthan that of root.EXPERIMENT Ill. Vegetative growth of Zoysia japonica and Zoysia matrella as affected by nitrogen and clipping height. 1. When no nitrogen was applied to Zoysia japonica, leaf blade which appeared during theAugust-early September period remained green for a perid of about 10 weeks and even leavesemerged in rate September lived for 42 days. However, leaf longevity did not exceed 8 weeks asnitrogen was applied. In contrast the leaf longevity of Zoysia matrella which emerged during the mid August-earlySeptember period was 11 weeks and, under the nitrogen applied, 9 weeks, indicating that thelife-spen of individual leaf of Zoysia matrella may be longer than that of Zoysia japorica. Clipping height had no effect on the leaf longevity in both grasses. 2. During the July-August period, tiller number, green leaf number and DM weightof Zoysia japonica were increased significantly with fertilizer nitrogen, but were not with twolevel of clipping height. This trend was reversed after late September ; no effect of nitrogen wasappeared. Instead, lax clipping increased tiller number, green leaf number and DM weight. Greenleaves stimulated by lax clipping resulted in the occurrance of more dead leaves in late October. 3. Among the stolons outgrown until early September, the primary stolon was not influencedby nitrogen and clipping treatments to produce only 2-3 stolons. However, 1st branch stoIon asaffected by nitrogen increased significantly, so most of stolons which occurred consisted of 1st branch stolons. 4. Until early September, stolon length obtained at nil nitrogen level was chiefly caused bythe primary stolons. By applying nitrogen, the primary stolons of Zoysia japonica waslonger than 1st branch stolons when severe clipping was involved and in turn, shorter than 1stbranch stolons when lax clipping was concerned. In Zoysia matrella, 1st branch stolons were muchlonger than the primary stolon when turf was clipped severely but in conditions of lax clippingthere was little difference in length between primary and 1st branch stolons. 5. Stolon nodes of both Zoysia japonica and Z. matrella were positively influenced by nit rogen, but no particular increase by imposing clipping height treatment was marked in Zoysiamatrella. Although the stolon of Zoysia japonica grew until late October, the growthstimulated by nitrogen was not so remarkable as to exceed that by nil N.

  • PDF

Development of Predictive Growth Model of Listeria monocytogenes Using Mathematical Quantitative Assessment Model (수학적 정량평가모델을 이용한 Listeria monocytogenes의 성장 예측모델의 개발)

  • Moon, Sung-Yang;Woo, Gun-Jo;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.194-198
    • /
    • 2005
  • Growth curves of Listeria monocytogenes in modified surimi-based imitation crab (MIC) broth were obtained by measuring cell concentration in MIC broth at different culture conditions [initial cell numbers, $1.0{\times}10^{2},\;1.0{\times}10^{3}\;and\;1.0{\times}10^{4}$, colony forming unit (CFU)/mL; temperature, 15, 20, 25, 37, and $40^{\circ}C$] and applied to Gompertz model to determine microbial growth indicators, maximum specific growth rate constant (k), lag time (LT), and generation time (GT). Maximum specific growth rate of L. monocytogenes increased rapidly with increasing temperature and reached maximum at $37^{\circ}C$, whereas LT and GT decreased with increasing temperature and reached minimum at $37^{\circ}C$. Initial cell number had no effect on k, LT, and GT (p > 0.05). Polynomial and square root models were developed to express combined effects of temperature and initial cell number using Gauss-Newton Algorism. Relative coefficients of experimental k and predicted k of polynomial and square root models were 0.92 and 0.95, respectively, based on response surface model. Results indicate L. monocytogenes growth was mainly affected by temperature and square root model was more effective than polynomial model for growth prediction.

Development of Predictive Growth Model of Vibrio parahaemolyticus Using Mathematical Quantitative Model (수학적 정량평가모델을 이용한 Vibrio parahaemolyticus의 성장 예측모델의 개발)

  • Moon, Sung-Yang;Chang, Tae-Eun;Woo, Gun-Jo;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.349-354
    • /
    • 2004
  • Predictive growth model of Vibrio parahaemolyticus in modified surimi-based imitation crab broth was investigated. Growth curves of V. parahaemolyticus were obtained by measuring cell concentration in culture broth under different conditions ($Initial\;cell\;level,\;1{\times}10^{2},\;1{\times}10^{3},\;and\;1{\times}10^{4}\;colony\;forming\;unit\;(CFU)/mL$; temperature, 15, 25 37, and $40^{\circ}C$; pH 6, 7, and 8) and applying them to Gompertz model. Microbial growth indicators, maximum specific growth rate (k), lag time (LT), and generation time (GT), were calculated from Gompertz model. Maximum specific growth rate (k) of V. parahaemolyticus increased with increasing temperature, reaching maximum rate at $37^{\circ}C$. LT and GT were also the shortest at $37^{\circ}C$. pH and initial cell number did not influence k, LT, and GT values significantly (p>0.05). Polynomial model, $k=a{\cdot}\exp(-0.5{\cdot}((T-T_{max}/b)^{2}+((pH-pH_{max)/c^{2}))$, and square root model, ${\sqrt{k}\;0.06(T-9.55)[1-\exp(0.07(T-49.98))]$, were developed to express combination effects of temperature and pH under each initial cell number using Gauss-Newton Algorism of Sigma plot 7.0 (SPSS Inc.). Relative coefficients between experimental k and k Predicted by polynomial model were 0.966, 0.979, and 0.965, respectively, at initial cell numbers of $1{\times}10^{2},\;1{\times}10^{3},\;and\;1{\times}10^{4}CFU/mL$, while that between experimental k and k Predicted by square root model was 0.977. Results revealed growth of V. parahaemolyticus was mainly affected by temperature, and square root model showing effect of temperature was more credible than polynomial model for prediction of V. parahaemolyticus growth.

Revegetation of a Lakeside Barren Area by the Application of Plant Growth-promoting Rhizobacteria

  • Ahn, Tae-Seok;Ka, Jong-Ok;Lee, Geon-Hyoung;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.171-174
    • /
    • 2007
  • The growth stimulation of wild plants by several bacterial species showing plant growth-promoting capabilities was examined in a barren lakeside area at Lake Paro, Korea. Microbial numbers and activities in the field soil were monitored for 73 days after inoculation of the bacteria. The acridine orange direct counts for the total soil bacterial populations ranged between $2.0-2.3{\times}10^{9}\;cells/g$ soil and $1.4-1.8{\times}10^{9}\;cells/g$ soil in the inoculated and uninoculated soils, respectively. The numbers of Pseudomonas spp., which is known as a typical plant growth-promoting rhizobacteria, and the total microbial activity were higher in the inoculated soil compared to those in the uninoculated soil. The average shoot and root lengths of the wild plants grown in the inoculated soil were 17.3 cm and 12.4 cm, respectively, and longer than those of 11.4 cm and 8.5 cm in the uninoculated soil. The total dry weight of the harvested wild plants was also higher in the inoculated soil (42.0 g) compared to the uninoculated soil (35.1 g). The plant growth-promoting capabilities of the inoculated bacteria may be used for the rapid revegetation of barren or disturbed land, and as biofertilizer in agriculture.

Wind Turbine Airfoils considering Surface Roughness Effects (표면거칠기 둔감도를 고려한 풍력발전기용 익형 개발)

  • Kim, Seok-Woo;Shin, Hyung-Ki;Jang, Moon-Seok
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.36-44
    • /
    • 2007
  • Most airfoils for wind turbines commercially available have been developed for aircrafts, which are operated at high Reynolds numbers. However, Reynolds numbers of wind turbines are very low compared to those of aircrafts. In other to improve wind turbine performances, airfoils for the use of wind turbine shall be designed such as S-series airfoils developed by NREL in America. The authors have designed new airfoils for wind turbines considering designated operation conditions of wind turbines and even local wind resources in Korea. The designed airfoils are characterized by improved roughness insensitivities compared to other airfoils such as S814 and S820. The developed KWA005-240 and KWA009-127 are for root and tip sections of a wind turbine blade, respectively. Although the results show much improved performances against NACA airfoils, performance data of post-stall regulation loses some accuracies due to the characteristics of the simulation tool of XFOIL. Therefore, wind tunnel experiments are required for more accurate evaluation of the designed airfoils. Currently, the experiments has been completed and the data analysis works are going on now. The final results obtained from the experiments will be published soon.

  • PDF

Some Properties About the Root Loci for Unity Negative Feedback Control Systems (단일 부궤환 제어시스템의 근궤적에 관한 특성)

  • Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1005-1008
    • /
    • 1996
  • We consider the interval of a gain within which it is guaranteed that a feedback control system is stable. This paper presents the condition under which either a unity feedback control system is stable for a connected gain interval with a proportional compensator cascaded with an open loop forward transfer function. By the connected interval we mean that all the numbers between any two numbers in the connected interval belongs to the connected interval. The condition may be described by a frequency inequality in terms of the denominator and/or numerator of the closed loop transfer function. We also consider the conditions for the discrete-time control systems and the time delay continuous-time control systems. We show that this condition cannot be extended for the transfer function having complex coefficients via a counterexample.

  • PDF

Anatomical study of Atractylodes japonica Koidz. ex Kitam. and A. macrocephaza Koidz. (삽주(Atractylodes japonica Koidz. ex Kitam.)와 큰꽃삽주(A. macrocephala Koidz.)의 해부학적 연구)

  • 정규영;김미숙
    • Korean Journal of Plant Resources
    • /
    • v.14 no.3
    • /
    • pp.188-195
    • /
    • 2001
  • The anatomical characteristics of rhizome, lateral root, stem, leaf, petiole, ovary and leaf epidermis about Atractylodes japonica Koidz. ex Kitam. and A. macrocephala Koidz. were investigated to estimate these taxonomic values. The cross sections of stem and ovary were very similar to two species, therefore these characters were not useful for delimitation of two species, but the size and distribution numbers per 100${\mu}{\textrm}{m}$$^2$of oil cavites in rhizome, the shape of leaf and petiole in cross section, the size of leaf epidermal cell and distribution numbers per 100 ${\mu}{\textrm}{m}$$^2$of stomata were differ from two species, therefore these were thought to be useful characters for delimitation of two species.

  • PDF

Multilayer Perceptron Model to Estimate Solar Radiation with a Solar Module

  • Kim, Joonyong;Rhee, Joongyong;Yang, Seunghwan;Lee, Chungu;Cho, Seongin;Kim, Youngjoo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.352-361
    • /
    • 2018
  • Purpose: The objective of this study was to develop a multilayer perceptron (MLP) model to estimate solar radiation using a solar module. Methods: Data for the short-circuit current of a solar module and other environmental parameters were collected for a year. For MLP learning, 14,400 combinations of input variables, learning rates, activation functions, numbers of layers, and numbers of neurons were trained. The best MLP model employed the batch backpropagation algorithm with all input variables and two hidden layers. Results: The root-mean-squared error (RMSE) of each learning cycle and its average over three repetitions were calculated. The average RMSE of the best artificial neural network model was $48.13W{\cdot}m^{-2}$. This result was better than that obtained for the regression model, for which the RMSE was $66.67W{\cdot}m^{-2}$. Conclusions: It is possible to utilize a solar module as a power source and a sensor to measure solar radiation for an agricultural sensor node.

Correlation between Cotyledon Numbers and some Needle Characteristics and 1-0 Seedling Growth of Pinus koraiensis (자엽수(子葉數)에 따른 잣나무 묘목(苗木)의 성장(成長) 및 침엽(針葉) 형질(形質)과의 상관(相關))

  • Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.70-74
    • /
    • 1978
  • The aims of this study was to elucidate the correlation between cotyledon numbers and seedling growth and some other traits of Pinus koraiensis. The results are summurized as follows; 1. A highly significant correlations between numbers of coty ledons and juvenile needles was found but no significances between cotyledon numbers and juvenile needle length, width and stomata row numbers. 2. The accessory resin canals did not begin to appear before June but began to appear only small numbers of seedling after July. It was observed that the number of accessory resin canals of juvenile leaves at various growing stages were not related with the number of cotyledons. 3. In the case of adult leaves, there was a significant difference in the number of leaves and the number of cotyledons, but no significant difference between the number of cotyledons and needle length, needle width and stomata row. 4. There were significant differences in the number of cotyledons and top height growth, and root caliper growth among individuals and due to ages. 5. Seedlings with more than 12 cotyledons showed better growth than those with 9 to 11 cotyledons.

  • PDF