• 제목/요약/키워드: Root motion

검색결과 152건 처리시간 0.033초

컴퓨터 시뮬레이션을 이용한 직각좌표 및 나선주사 방식의 병렬 자기공명 영상에서 움직임 효과 연구 (Study of Motion Effects in Cartesian and Spiral Parallel MRI Using Computer Simulation)

  • 박수경;안창범;심동규;박호종
    • Investigative Magnetic Resonance Imaging
    • /
    • 제12권2호
    • /
    • pp.123-130
    • /
    • 2008
  • 목적 : 본 논문에서는 자기공명영상 데이터 획득 시 객체의 움직임이 병렬 자기공명영상에 미치는 영향에 대하여 연구하였다. 일반적으로 병렬 자기공명영상 방법의 경우 데이터 획득 시간이 일반 자기공명영상 방법보다 짧기 때문에 움직임에 강인하다고 알려져 있다. 그러나 생체내의 비자발적인 장기 운동 등과 같은 불가피한 움직임이 포함된 경우 병렬 영상의 움직임 아티펙트는 일반적인 영상에 비하여 더 심각할 수 있다. 따라서 본 논문에서는 실제 환경에서 나타날 수 있는 다양한 움직임 종류를 정의하고, 이러한 움직임이 발생하였을 때 병렬 자기공명영상에 나타나는 영향을 일반적인 영상방법과 비교하여 살펴보았다. 대상 및 방법 : 병렬 자기공명영상 데이터를 획득할 때 발생하는 움직임에 의한 영향을 확인하기 위하여 실제 환경에서 발생할 수 있는 5가지 움직임 종류를 정의하였다. 즉 움직임-1과 2는 서로 다른 크기와 주기를 갖는 주기적인 움직임이고, 움직임-3과 4는 일정 시간 (segment) 단위로 운동하는 선형적인 움직임이다. 마지막으로 움직임-5는 비 주기 랜덤 운동이다. 사용된 영상 방법은 직각 좌표 기반 영상과 나선 주사 (비 직각 좌표) 영상으로 각각에 대해 병렬 영상법과 일반적인 영상법을 적용하여 움직임 효과를 살펴 보았다. 결과 : 본 논문에서 정의한 움직임 종류에 대한 병렬 자기공명영상에서의 움직임 효과를 알아보았다. 움직임-3과 4와 같이 병렬 자기공명영상에 의하여 움직임이 감소하는 경우 움직임 아티팩트는 일반 자기공명영상에 비하여 줄어들었다. 그러나 움직임-1과 2와 같이 주기적으로 진동할 경우 병렬 영상의 왜곡이 일반 자기공명영상에 비하여 더 크게 나타났다. 움직임-5와 같이 랜덤 한 경우 일반 자기공명영상과 병렬 자기공명영상이 서로 유사하게 나타났다. 결론 : 본 논문에서는 자기공명영상 데이터 획득 시 객체의 움직임이 병렬 자기공명영상에 미치는 영향에 대하여 연구하였다. 그 결과 병렬 자기공명영상을 통해 움직임이 줄어드는 경우를 제외한 다른 움직임 종류에 대해서는 병렬 자기공명영상보다 일반 자기공명영상이 더 좋은 화질을 나타내었다.

  • PDF

고유수용성신경근촉진법 중 하지패턴이 경부 굴곡근 근활성도에 미치는 영향 (The Effects of Proprioceptive Neuromuscular Facilitation Leg Patterns on the Muscle Activation of Neck Flexors)

  • 이문규;김종만;박형기;김원호
    • 한국전문물리치료학회지
    • /
    • 제15권1호
    • /
    • pp.46-53
    • /
    • 2008
  • The aim of the present study was to determine the effect of proprioceptive neuromuscular facilitation (PNF) leg patterns on the muscle activation of neck flexors. Twenty healthy subjects participated in this study. Each subject performed bilateral asymmetrical PNF leg patterns against manual resistance under four conditions: through the full range of motion toward the right side, left side, and the end range in the right side, left side. Electromyographic (EMG) data was collected from the sternocleidomastoid (SCM) muscles as neck flexors. The root mean square (RMS) value of the SCM was measured and normalized from maximal EMG activity of the SCM. The data were analyzed using the paired t-test and repeated analysis of variance (ANOV A) was used to compare the statistical significance. The results of this study are summarized as follows: Firstly, the RMS values of SCM were significantly higher in all four PNF leg patterns than in the resting condition (p<.05). Secondly, there was no significant difference in muscle activation according to the direction of PNF leg patterns (p>.05). Thirdly, there was no significant difference in muscle activation according to the point of range of the motion of leg patterns (p>.05). It is suggested that PNF bilateral asymmetrical leg patterns have a considerable effect on muscle activation of the SCM, regardless of the range of motion and direction of PNF bilateral asymmetrical leg patterns.

  • PDF

Wind tunnel tests of 3D wind loads on tall buildings based on torsional motion-induced vibrations

  • Zou, Lianghao;Xu, Guoji;Cai, C.S.;Liang, Shuguo
    • Wind and Structures
    • /
    • 제23권3호
    • /
    • pp.231-251
    • /
    • 2016
  • This paper presents the experimental results of the wind tunnel tests for three symmetric, rectangular, tall building models on a typical open terrain considering the torsional motion-induced vibrations. The time histories of the wind pressure on these models under different reduced wind speeds and torsional amplitudes are obtained through the multiple point synchronous scanning pressure technique. Thereafter, the characteristics of both the Root Mean Square (RMS) coefficients and the spectra of the base shear/torque in the along-wind, across-wind, and torsional directions, respectively, are discussed. The results show that the RMS coefficients of the base shear/torque vary in the three directions with both the reduced wind speeds and the torsional vibration amplitudes. The variation of the RMS coefficients in the along-wind direction results mainly from the change of the aerodynamic forces, but sometimes from aeroelastic effects induced by torsional vibration. However, the variations of the RMS coefficients in the across-wind and torsional directions are caused by more equal weights of both the aerodynamic forces and the aeroelastic effects. As such, for the typical tall buildings, the modification of the aerodynamic forces in the along-wind, across-wind, and torsional directions, respectively, and the aeroelastic effects in the across-wind and torsional directions should be considered. It is identified that the torsional vibration amplitudes and the reduced wind speeds are two significant parameters for the aerodynamic forces on the structures in the three directions.

Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems

  • Cho, Young-Shin;Jang, Seong-Ho;Cho, Jae-Sung;Kim, Mi-Jung;Lee, Hyeok Dong;Lee, Sung Young;Moon, Sang-Bok
    • Annals of Rehabilitation Medicine
    • /
    • 제42권6호
    • /
    • pp.872-883
    • /
    • 2018
  • Objective To replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters. Methods The investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camera-based system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses. Results The differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC. Conclusion These results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.

다중 집중질량효과에 의한 탄성 회전 블레이드의 진동해석 (Vibration Analysis of A Rotating Cantilever Blade with Multiple Concentrated Masses with an Elastically Restrained Root)

  • 윤경재
    • 한국군사과학기술학회지
    • /
    • 제7권4호
    • /
    • pp.114-124
    • /
    • 2004
  • In this paper, we have proposed a novel method which can analysis a rotating elastically restrained blade with concentrated masses located in an arbitrary position. 1:he equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. For the modeling of the multi-concentrated masses, the Dirac delta function is used for the mass density function. Simulation results show that the vibration characteristics of elastic restrained blade of according to dimensionless variables for example, multiple masses magnitude and mass location ratio. This method can be applied to an practical rotating blade system required to more accurate results.

공진 주파수 영역에서 탄성지지단의 마찰감쇠효과를 고려한 회전 블레이드의 과도응답해석 (Transient Response Analysis of Rotating Blade Considering Friction Damping Effect of Elastically Restrained Root in Resonant Frequency Range)

  • 윤경재
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.100-112
    • /
    • 2003
  • This paper presents the transient response analysis of a rotating blade in resonant frequency range. It is shown that the modeling is considered in elastic foundation and friction damping effect. The equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. Numerical results show that the magnitude of friction damping to reduce maximum transient response in near the critical angular speed. The method can be applied to a number of examples of the practical rotating blade system to minimize transient response in resonant frequency range.

유한 오름 시간을 갖는 음전위 펄스에서 시변환 플라즈마 덮개의 거동 연구 (Measurement of time-dependent sheath for the negative voltage pulse with a finite rise time)

  • 김곤호;김영우;김건우;한승희;홍문표
    • 한국진공학회지
    • /
    • 제8권3B호
    • /
    • pp.361-367
    • /
    • 1999
  • It was observed that the time-dependent sheath which was formed around the planar target biased by negatively voltage pulse with a finite rise time in the plasma source ion implantation. F\Results show that the time-dependent sheath consisted of two parts: the ion matrix sheath development during the pulse rise time and the dynamic sheath motion after attaining the full pulse. The ion matrix sheath development which is in proportion to square root of the pulse time and the pulse rise rate over the plasma density but independent of the ion mass. The dynamic sheath propagates with approximately the ion sound speed.

  • PDF

Earthquake response spectra estimation of bilinear hysteretic systems using random-vibration theory method

  • Yazdani, Azad;Salimi, Mohammad-Rashid
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1055-1067
    • /
    • 2015
  • A theoretical procedure to estimate spectral displacement of a hysteretic oscillator with bilinear stiffness excited by band-limited excitation is presented. The stochastic method of ground-motion simulation is combined with the random vibration theory to compute linear and nonlinear structural response. The response is obtained by computing the root-mean-square oscillator response using dissipation energy balancing by integrating over all energy levels of system weighting with the stationary probability density of the energy. The results are presented in a convenient form, and the accuracy of the procedure is assessed by comparison with results obtained with the time-domain method using the recorded data. The model shows little or no bias at the structural period of engineering interest.

Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow

  • Huang, Dongmei;Wu, Teng;He, Shiqing
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.37-54
    • /
    • 2020
  • To investigate the motion-induced aeroelastic effects (or aerodynamic feedback effects) on a square cylinder in uniform flow, a series of wind tunnel tests involving the pressure measurement of a rigid model (RM) and simultaneous measurement of the pressure and vibration of an aeroelastic model (AM) have been systematically carried out. More specifically, the aerodynamic feedback effects on the structural responses, on the mean and root-mean-square wind pressures, on the power spectra and coherence functions of wind pressures at selected locations, and on the aerodynamic forces were investigated. The results indicated the vibration in the lock-in range made the shedding vortex more coherent and better organized, and hence presented unfavorable wind-induced effects on the structure. Whereas the vibration in the non-lock-in range generally showed insignificant effects on the flow structures surrounding the square cylinder.

Contact Frce Cotrol of Root Hnd using VSS

  • Sim, Kwee-Bo;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1080-1084
    • /
    • 1989
  • The motion of an workpiece to be manipulated is determined by the forces applied to the workpiece. During the contact between the robot hand and the workpiece, impulsive forces may dominate all other forces, and determine the ultimate success or failure of a task. Therefore, one of the important problems in the robot hands is the control of the initial impact force. In this paper, the problem of the force control of robot hand under system with contact force is presented. The principle of energy can be applied in the modelling of the impact force. In order to achieve stable contact and avoid bounces and vibrations, VSS is adopted in the design of the contact force controller. Some simulations are carried out for a pushing operation to control the contact force.

  • PDF