• Title/Summary/Keyword: Root density

Search Result 721, Processing Time 0.032 seconds

Comparison of Spring Growth Characteristics of Creeping Bentgrass(Agrogtis palustris Huds.) Cultivars (봄철 크리핑 벤트그래스의 품종별 특성비교)

  • Lee, Hyung-Seok;Hong, Beom-Seok;Kim, Kyung-Duck;Tae, Hyun-Sook
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • This study was initiated to evaluate the growth characteristics of creeping bentgrass cultivars during the sprlng season. The green-up of 'CY' and 'T-1' were about 2 weeks earlier than the other cultivars followed by 'Penn A' 'Crenshaw', 'L> 'Penncross' > 'Putter' > 'Dominant' > 'SR1020' in that order. 'T-1' and 'CY-2' had the highest chlorophyll content while 'Penncross' had the lowest during the spring. 'Crenshaw' and 'Penn A-4' showed the highest shoot density in this research, followed by 'CY-2', 'L-93', 'T-1', 'Putter', 'Dominant', 'SR1020', and 'Penncross' in that order. In case of root length, 'CY-2' and 'L-93' were the best cultivars, but 'Penncross' was worst during the spring. 'CY-2' had the best visual quality among the cultivars, 'T-1' and 'Crenshaw' also classified as high visual quality group whereas 'SR1020', 'Dominant' and 'Penncross' were grouped in relatively low quality. In conclusion, 'CY-2', 'T-1' and 'Crenshaw' were the best cultivars in terms of growth characteristics in spring. Conversely, 'SR1020' and 'Penncross' were the poorest cultivars. These results can be more useful for management or constructing of golf courses. However, this research was performed with little compaction stress. More information is needed on the tolerance to compaction stress of these bentgrass cultivars.

Vegetation Structure of Lower Stratum and Pinus densiflora Natural Regeneration Features from Micro-topography Classification in Pinus densiflora Forest of Anmyeon-do Island (안면도 소나무림 내 미세지형구분을 통한 하층식생구조와 소나무 천연갱신 양상)

  • Byeon, Seong Yeob;Kim, Hyun Seop;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.189-199
    • /
    • 2019
  • The forest management paradigm has recently shifted from focusing on commercial production to focusing on ecosystem management. Accordingly, a natural seedling regeneration method that has a naturally high affinity has attracted much attention in recent years. The aim of this study was to determine the relationship among various environmental factors, lower stratum vegetation, and seedling regeneration in Pinus densiflora forests. The survey site comprised 50 sectors divided using the line transect method, and the survey data were divided into those from wet habitat (19 sites) and dry habitat (31 sites), depending on the soil humidity, and were analyzed separately to show the close relationship between soil humidity and natural seedling regeneration. As a result, the dry habitat exhibited high seedling density (157,419 trees/ha), with the main species being Quercus serrata, Zanthoxylum piperitum, Smilax china, and Pueraria lobata, while wet habitat exhibited low seedling density (57,895 trees/ha), with the main species being Stephanandra incisa, Castanea crenata, Lespedeza maximowiczii, Lysimachia barystachys, Aralia elata, and Styrax japonicus. The height and root-collar diameter under wet conditions exhibited faster growth than those under dry conditions. Height growth by the root-collar diameter in dry habitat increased faster than that in wet habitat. It was also confirmed that seedling regeneration in wet habitat exhibited a rapid growth pattern 5 years after germination. These results suggest that the seedlings begin to grow more rapidly after a period of suppression by competition with surrounding plants. Considering an ecosystem or ecological management approach, specific practices, such as bush control and vine clearing in wet habitats, should be more intensively conducted, especially at the beginning of the management operations.

Effect of Soluble-silicate or Chitosan Foliar Spray on Ginseng Cultivated in Blue-white Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Jang, In Bae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.46-46
    • /
    • 2019
  • The experiments were performed in the Jinan (elevation: 300 meters above sea level), Jeollabuk-do. Seedlings (n = 63 per $3.3m^2$) of ginseng cultivar (Cheonpung, Yeonpung) were planted on April 10, 2015. Shading material of plastic film house was blue-white film. Before the Planting seedling, silicate (3 kg/10 a) or chitosan (40 kg/10 a) was fertilized and foliar sprayed on the leaves 1000 times dilution solution once a month from May to September every year. The growth results of 5-year old ginseng surveyed in 2018 are as follows. The average air temperature in the plastic film house was the highest at $26.6^{\circ}C$ and $26.5^{\circ}C$ in July and August, respectively, and the highest temperature was $40.5^{\circ}C$ in July. The maximum daily temperature of $35^{\circ}C$ or more was 30 days, with the average soil temperature being $24.9^{\circ}C$ in August. The chemical properties of the test soil are as follows. pH was 6.4~6.9 level and EC was 0.35~0.46 dS/m. The organic matter content was 33.5~41.4 g/kg, and available-P content was 251.9~306.8 mg/kg. Exchangeable cations contents, such as K, Ca and Mg were all the appropriate ranges. The soil microbial density surveyed by the dilution plate method was 10~50 times higher than that of control (Non-treatment) and actinomycete density was 3~6 times higher. Pathogens of the genus Fusarium by Metagenome analysis decreased 91.3% and 68.2% respectively in the foliar sprayed of chitosan and soluble-silicate. The light intensity (PAR) in the blue-white film plastic film house gradually increased until July and then decereased, with the average of light intensity in March-October was $120.3umol/m^2/s$. The growth of aerial parts such as plant height and stem length was better than non-sprayed group in silicate or chitosan treatments and Yeonpung cultivar was superior to the Cheonpung cultivar. The SPAD value was higher in Yeonpung cultivar foliar sprayed with soluble-silicate. The growth of underground parts such as root length and taproot length were better in chitosan and soluble-silicate treatment than control, especially in Yeonpung cultivar foliar sprayed with chitosan was good in taproot length and taproot diameter, and fresh weight of root was 60.1 g. Ginsenoside contents were 24.9 mg/g and 22.4 mg/g, in the Cheonpung cultivar foliar sprayed with soluble-silicate or chitosan respectively, 28% and 15% higher than control (19.5 mg/g). The incidence of disease by Alteraria panax and Botrytis cinerea was 3~9% and 4~9%, respectively. High temperature damage rate was 3~5%.

  • PDF

Comparison of Growth Characteristics of Creeping Bentgrass(Agrostis palustris Huds.) Cultivars in Summer (하절기 크리핑 벤트그래스의 품종별 특성비교)

  • Tae, Hyun-Sook;Lee, Hyung-Seok;An, Kil-Man;Kim, Jong-Bo
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2006
  • This study was initiated to evaluate the growth characteristics of seven creeping bentgrass cultivars in summer, 'Penncross' showed the worst visual quality, whereas 'Penn A-4' and 'Crenshaw' the best quality. 'Putter', which was maintained a fair quality during the test period, was regarded as a good cultivar because of no significant variation in summer as compared to the other caltivars. 'Crenshaw',' L-93' and 'Penn A-4' were greater in chlorophyll content and 'Penncross' lowest during the summer. Also, 'SR1020' had a low content of chlorophyll. 'Putter' greatly increased in chlorophyll content after fertilization. The highest shoot density($19.3/cm^2$) was found with 'L-93' in early August, followed by 'Crenshaw', 'Penn A-4', 'Putter', 'Dominant', and 'SR1020' in that order. However, 'Penncross' was lowest($15.7/cm^2$). As for a root length, 'L-93' was longest, being over an average 5.5cm. 'Penn A-4' and 'Putter' also showed good result in root growth. However, the root length considerably decreased with 'SR1020', 'Penncross' and 'Dominant' in summer. Brown patch was a serious disease for the most cultivars, except 'Penncross'. 'Dominant' had the most serious damage. 'Putter', 'L-93', 'Crenshaw', 'SR1020', and 'Penn A-4' were also greater in damage over the others. In regards of algae occurrence in summer, 'Penn A-4' had the least damage, while 'Dominant' the greatest. In conclusion, 'Crenshaw', 'Penn A-4' and 'L-93' were the best cultivars in terms of summer growth. Conversely, 'Penncross' was the poorest one. However, this study was conducted under the conditions of one-year old green. Accordingly, in-depth experiment should be done over several years to elucidate the characteristics of growth for the wide range of creeping bentgrass cultivars during the summer.

Effects of Soil Hardness on the Root Distribution of Pinus rigida Mill. Planted in Association with Sodding Works on the Denuded Land (사방시공지(砂防施工地)에 있어서 리기다소나무의 수근(樹根)의 분포(分布)에 미치는 토양견밀도(土壤堅密度)의 영향(影響))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.66-76
    • /
    • 1982
  • Soil harness represents such physical properties as porosity, amount of water, bulk density and soil texture. It is very important to know the mechanical properties of soil as well as the chemical in order to research the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to grip soil hardness by soil layer and also to grasp the root distribution and the correlation between soil hardness and the root distribution of Pinus riguda Mill. planted on the denuded hillside with sooding works by soil layer on soil profile. The site investigated is situated at Peongchang-ri 13, Kocksung county, Chon-nam Province. The area is consisted of 3.63 ha having on elevation of 167.5-207.5 m. Soil texture is sandy loam and parant rock in granite. Average slope of the area is $17^{\circ}-30^{\circ}$. Soil moisture condition is dry. Main exposure of the area is NW or SW. The total number of plots investigated was 24 plots. It divided into two groups by direction each 12 plots in NW and SW and divided into three groups by the position of mountain plots in foot of mountain, in hillside, and in summit of mountain, respectively. Each sampling tree was selected as specimen by purposive sampling and soil profile was made at the downward distance of 50cm form the sampling tree at each plot. Soil hardness, soil layer surveying, root distribution of the tree and vegetation were measured and investigated at the each plot. The soil hardness measured by the Yamanaka Soil Hardness Tester in mm unit. the results are as follows: 1) Soil hardness increases gradually in conformity with the increment of soil depth. The average soil indicator hardness by soil layer are as follows: 14.6mm in I - soil layer (0-10cm in depth from soil surface), 16.2mm in II - soil layer (10-20cm), 17.2 in III - soil layer (20-30cm), 18.3mm in IV - soil layer(30-40cm), 19.8mm in V - soil layer (4.50mm). 2) The tree roots (less than 20mm in diameter) distribute more in the surface layer than in the subsoil layer and decrease gradually according to the increment of soil depth. The ratio of the root distribution can be illustrated by comparing with each of five soil layers from surface to subsoil layer as follows: I - soil layer; 31%, II - soil layer; 26%, III - soil layer; 18%, IV - soil layer; 12%, V - soil layer; 13%, 3) Soil hardness and tree root distribution (less than 20mm in diameter) of Pinus rigida Mill. correlate negatively each other; the more soil hardness increases, the most root distribution decreases. The correlation coefficients between soil hardness and distribution of tree roots by soil layer are as follows: I - soil layer; -0.3675 (at the 10% significance level), II - soil layer; -0.5299 (at the 1% significance level), III - soil layer; -0.5573 (at the 2% significance level), IV - soil layer; -0.6922 (at the 5% significance level), V - soil layer; -0.7325 (at the 2% significance level). 4) the most suitable range of soil hardness for the growth of Pinus rigida Mill is the range of 12-14.9mm in soil indicator hardness. In this range of soil indicator hardness, the root distribution of this tree amounts to 41.8% in spite of 33% in soil harness and under the 20.9mm of soil indicator hardness, the distribution amounts to 93.2% in spite of 82% in soil hardness. Judging from above facts, the roots of Pinus rigida can easily grow within the soil condition of 20.9mm in soil indicator hardness. 5) The soil layers are classified by their depths from the surface soil.

  • PDF

Estimation of the Planting Environment of Planted Areas around Sudokwon Landfill Site (수도권매립지 주변 식재지의 식재기반 평가)

  • Park, Heon;Yoon, Yong-Han;Kim, Won-Tae;Lee, Hyun-Jong;Park, Bong-Ju
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • The present study was conducted to analyze the soil environment of planted areas around Sudokwon Landfill Site, and drew conclusions as follows. Among the physical properties of soil, bulk density ranged between 1.11~1.59 $g{\cdot}cm^{-3}$, which was higher than the average bulk density (1.05 $g{\cdot}cm^{-3}$) of the B layer of forest soil in Gyeonggido, Korea. This is probably because of treading by heavy equipment used to prepare the ground for planting, and measures should be taken to improve bulk density for the growth of the root system of trees. Among the chemical properties of soils, the organic matter content was only 1/5~1/10 of 30 $g{\cdot}kg^{-1}$, the adequate level for landscape planting. In addition, cation exchange capacity (CEC) ranged between 1~3 $cmol{\cdot}kg^{-1}$, which was much lower than 6 $cmol{\cdot}kg^{-1}$, the least capacity for landscape planting. Therefore, these problems need to be solved.

  • PDF

The Effect of Foliar Application to Improve Putting Green Performance (벤트그래스 그린 관리를 위한 엽면 시비의 효과)

  • Hong, Beom-Seok;Tae, Hyun-Sook;Oh, Sang-Hun;Cho, Yong-Sup
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.94-99
    • /
    • 2011
  • This study was performed to investigate the effect of foliar feeding as the fertilization on creeping benrgrass green. Research results have showed that the visual quality of bentgrass as well as shoot density and chlorophyll index dramatically improved after foliar feeding. Shoot density of bent grass in foliar based fertilization was 2.8 ea/$cm^2$ higher than that of the liquid based fertilization during the experiment period, moreover that the foliar feeding is more effective to alleviate shoot density during the rainy season in summer. Results showed that foliar feeding was key role to achieve the stable visual quality, chlorophyll index and maintained Normalized Difference Vegetation Index (NDVI) throughout the year in addition to get fast recovery after aeration and dry spot. These were consistent with the previous research of foliar feeding which directly provided nutrient to the turfgrass leaf thus increased turfgrass growth within a short time. It is projected to be a especially adequate management program during the hot summer season in which the nutrition feeding is low. However, root growth was no significant difference between foliar based fertilization and liquid based fertilization. Golf Course managers also should consider about the number of frequent fertilizing. Lastly, it was no big change in chemical property by soil foliar based fertilization which is meaning of preventing the soil salinization, meanwhile, it is prone to reach the nutrient deficiency. It hopes to be settled as the general fertilization in golf course of Korea, since there are many advantages of foliar based fertilization program. It is suggested to study more practical process of foliar feeding through the further research.

Effect of Nitrogen Rate and Planting Density on Early Growth in Wheat

  • Song, Chang-Khil;Richard A, Richards
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • This experiment was conducted with nine wheat geno-types to choose the wheat which has excellent early vigour. 'Vigour 18' and 'ZL 59A' are excellent in the long coleoptile genotype, while 'Amery' and 'Janz' are excellent in the short coleoptile genotype. Responding to the growth stage and nitrogen level, Vigour 18 is predominant in the long coleoptile genogype, while Janz in the short coleoptile genotype. Responding to sowing density and nitrogen level, the higher the sowing density was, the shorter the leaf area of Vigour 18 and Janz. Also the leaf area turned out to larger in the plot fertilized with high nitrogen than in the plot fertilized with low nitrogen. This is true of leaf weight and root weight. Concerning specific leaf area (SLA) and leaf area ratio (LAR), the higher the sowing density was, the SLA tended to grow larger, while the SLA grew larger in the plot fertilized with low nitrogen, as were found in Vigour 18 and Janz. The roots of long coleoptile genotype, Vigour 18, turned out to grow longest on the plot sown with 3 seeds. While the roots of short coleoptile genotype, Janz, grew longest on the plot sown with 2 seeds. The relative growth rate (RGR) was the same at low N rates and high N rates. The RGR was 0.071 and 0.072 g $g^{-1}d^{-1}$ at low N rates and high N rates. The partitioning of RGR into net assimilation rate (NAR) and LAR showed that the average LAR at low N rates was similar to the LAR at high N rates. Variation within each cultivar in the LAR and NAR was small relative to the difference between them at low N rates and high N rates. Above ground mass was 8.2 mg greater at high N rates than low N rates, whereas leaf area was 0.05 $\textrm{m}^2$$kg^{-l}$ greater at high N rates than low N rates. The NAR was similar at low N rates and high N rates, whereas LAR was greater at high N rates (0.05 $\textrm{m}^2$$kg^{-l}$); variation in SLA was responsible for the variation in NAR and LAR both at low N rates and high N rates. NAR was more closely associated with the reciprocal of SLA.

  • PDF

Green management of using with Trinexapac-ethyl (식물생장조절제 Trinexapac-ethyl을 이용한 그린관리)

  • Hong, Beom-Seok;Tae, Hyun-Sook;Jeon, Jae-Chan;Cho, Yong-Sup;Oh, Sang-Hun
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.287-294
    • /
    • 2009
  • This study conducted to evaluate the growth characteristics of creeping bentgrass in summer after application of the plant growth regulator, Trinecapac-ethyl, and these data may provide basic information to golf course turf maintenance. The results showed that the shoot density of creeping bentgrass was increased an average density of 1.7 $ea/cm^2$ with the trinexapac-ethyl application, especially about 2 $ea/cm^2$ during the growth retarded period of June and July. The root length increased also in June and August. The visual quality was improved significantly with trinexapac-ethyl treatment all the experimental periods, moreover, the effect was significant by reducing a summer decline stress of creeping bentgrass during the warm and humid period of summer. The green speed was significantly improved by this growth regulator treatment and those effect was prominent during stressed season of late June to mid July. Overall of the result, we found that shoot density, visual quality and green speed of bentgrass green were improved by trinexapac-ethyl treated from early growing season of spring and these effects were continued during summer. It should be very beneficial to manage the bentgrass green in stressed season. In future, the possibility and efficiency of mixture with fungicides and/or fertilizers might be needed. The spring green-up test with trinexapac-ethyl will be followed in next spring.

Colonization Characteristics and Density of Arbuscular Mycorrhizal Fungi(AMF) in the Different Cultivated Grape Soils (재배방식이 상이한 포도 재배지 토양의 Arbuscular균근균 포자밀도와 감염특성)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Liu, YanPeng;Lee, Do-Jin;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.476-481
    • /
    • 2007
  • There was no difference between eco-friendly and conventional cultivated soils in the chemical properties. But $Av.P_2O_5$ contents in the eco-friendly cultivated soils were slightly higher than that of conventional cultivated soils. In the conventional cultivated soils, the coefficient of correlation between spore density and soil chemical properties such as pH, EC, OM, $Av.P_2O_5$, K${\surd}$(Ca+Mg) and CEC was $-0.48^*$, -0.05, $0.48^*$, -0.12, -0.13, 0.31 respectively. But, in the eco-friendly cultivated soils was $-0.68^*$, $0.69^*$, $0.96^{**}$, $0.75^*$, $0.63^*$, $0.92^{**}$ respectively. The spore density was 140 spores $30g^{-1}$ in the eco-friendly cultivated soils and 60 spores $30g^{-1}$ in the conventional cultivated soils. Infection ratio of intercellular hypha was higher than that of arbuscular and vesicular among the fungi structures within the root. Suncheon and Cheonan as eco-friendly cultivated soil were higher than GimJe and NamWon in infection ratio.