• Title/Summary/Keyword: Room temperature solid-phase

Search Result 119, Processing Time 0.03 seconds

Development of Matrix for the Immobilization of High Level Radioactive Waste : Study on the Synthesis of Ce-pyrochlore (고준위 핵페기물의 고정화를 위한 메트릭스 개발 : Ce파이로클로어 합성 연구)

  • ;;;Yudintsev, S. V²
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • Ce-pyrochlore (CaCe $Ti_2 $O_7)was synthesized to study its properties and phase relations in CaO-Ce $O_2$-Ti $O_2$ system because Ce-pyrochlore was known as a promising material for the immobilization of radioactive actinide. The samples were prepared from the high purity starling materials under the pressure of 200~400 kg/$\textrm{cm}^2$ at room temperature, and annealed at 1000~ 150$0^{\circ}C$. The Synthesized samples were analysed and indentified with XRD and SEM/EDS methods. The optimal formation condition of Ce-pyrochlore was at 130$0^{\circ}C$ under $O_2$ atmosphere and the chemical composition of it wasCa$Ca_{1-x}Ti_{2-y}O_{7-x-2y}$(x=0.03-0.05, y=0.02~0.04) At temperature between 130$0^{\circ}C$ 140$0^{\circ}C$, Ce-pyrochlore underwent rapidly the incongruent decomposition to perovskite. Ce-perovskite, a partial solid solution between perovskite and loparite (C $e_{0.66}$Ti $O_3$), was observed as a major phase above 140$0^{\circ}C$.>.

Ti-Getter Effects on Magnetic Properties of Ti0.96Co0.02Fe0.02O2 (Ti-Getter가 Ti0.96Co0.02Fe0.02O2의 자기적 특성에 미치는 영향)

  • Nam, H.D.;Kim, S.J.;Baek, J.K.;Lee, S.R.;Park, Cheol-Su;Kim, E.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2008
  • The samples were synthesized by using a solid state reaction. The X-ray diffraction pattern for $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ showed a pure rutile phase with tetragonal structure, Mixtures of the proper proportions of the elements sealed in evacuated quartz ampoule were heated at $870{\sim}930^{\circ}C$ for one day and then slowly cooled down to room temperature at a rate of $10^{\circ}C$/h. In order to obtain single phase material, it was necessary to grind the sample after the first firing and to press the powders into pellets before annealing them for a second time in evacuated and sealed quartz ampoule. Magnetic properties have been investigated using the vibrating sample magnetometer (VSM). Room temperature magnetic hysteresis (M-H) curve showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $1.5\;{\mu}_B$/CoFe. But the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $0.02\;{\mu}_B$/CoFe without Ti-getter. Size of particles is about $1\;{\mu}m$ using the transmission electron microscope (TEM). The ingredients of sample are distributed irregular in particles. Only Fe get shown on the surface of particles.

Structural and Electrical Properties of La0.7Sr0.3-xMgxMnO3 Ceramics with MgO Content (MgO 첨가에 따른 La0.7Sr0.3-xMgxMnO3 세라믹스의 구조적, 전기적 특성)

  • Hyun-Tae Kim;Jeong-Eun Lim;Byeong-Jun Park;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Young-Gon Kim;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.275-279
    • /
    • 2023
  • La0.7Sr0.3-xMgxMnO3 (LSMMO) (x=0.05~0.20) specimens are fabricated by a solid phase sintering method, and the sintering temperature and time are 1,300℃ and 2 hours, respectively. The dependence of the crystalline structure according to the amount of Mg2+ contents is not observed, and all specimens show a polycrystalline rhombohedral crystal structure, the X-ray diffraction (110) peaks move to the high angle side with increasing the amount of Mg2+ contents. LSMMO specimens exhibit a granule-shaped microstructure with an average grain size of 1 ㎛ or less. Resistivity gradually decrease as the amount of Mg2+ contents increased. And in the La0.7Sr0.1Mg0.2MnO3 specimen, resistivity and B25/65-value are 36.7 Ω-cm and 394 K at room temperature, respectively. LSMMO specimens show a variable-range hopping (VRH) electrical conduction mechanism, and the negative temperature of coefficient of resistance (NTCR) is approximately 0.37~0.38%/℃.

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.

Enhancement of cyanoacrylate-developed marks using p-dimethylaminobenzaldehyde (DMAB) on semi-porous surfaces and analysis of the influence factors on fluorescence intensity (반다공성 재질에 유류된 지문의 CA 훈증 후 p-dimethylaminobenzealdehyde(DMAB) 형광시약 적용 시 표면적과 주변 온도, 기압이 형광착색에 미치는 효과에 관한 연구)

  • Yu, Je-Sul;Kim, Ju-Hah
    • Analytical Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.187-195
    • /
    • 2014
  • It is very important to minimize the damage of latent fingerprints at enhancing the contrast. This study proves the enhancement effects of cyanoacrylate-fumed latent fingerprints using p-dimethylaminobenzealdehyde (DMAB) on semi-porous surfaces and the influence factors. The latent fingerprints in experiment were developed for cyanoacrylate treatment in a vacuum chamber and used after drying at room temperature for 24 hours. For fluorescence staining, the cyanoacrylate-developed marks using DMAB were sublimated during 48 hours under the different conditions of surface area, temperature, atmospheric pressure. First experiment showed how surface area effects on the sublimation rate and fluorescence intensity by DMAB of particle size and container size. In addition, the fluorescence staining using DMAB with solvent-free contact method had the greatest fluorescence intensity after 36 hours and a low fluorescence intensity over a certain size of surface area. Second experiment showed that the evaporation of DMAB solid crystals got a satisfying result in a temperature of $20^{\circ}C$ and reduced time to get the greatest fluorescence intensity. It took a long time to get a optimum level of fluorescence intensity at $30^{\circ}C$ or more and it was less effective in fluorescence intensity. Third experiment on the pressure indicated that the fluorescence intensity of vacuum was weaker than nonvacuum but it was inapplicable to very high variations in pressure.

Fabrication and densification of magnetic α-Fe/Al2O3 nanocomposite by mechanical alloying (기계적합금화에 의한 α-Fe/Al2O3 자성 나노복합재료의 제조 및 치밀화)

  • Lee, Chung-Hyo;Kim, Han-Woong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.314-319
    • /
    • 2013
  • Fabrication of nanocomposite material for the $Fe_2O_3-Al$ system by mechanical alloying (MA) has been investigated at room temperature. It is found that ${\alpha}-Fe/Al_2O_3$ nanocomposite powders in which $Al_2O_3$ is dispersed in ${\alpha}-Fe$ matrix are obtained by mechanical alloying of $Fe_2O_3$ with Al for 5 hours. The change in magnetization and coercivity also reflects the details of the solid state reduction process of hematite by pure metal of Al during mechanical alloying. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $1000^{\circ}C$ and $1100^{\circ}C$ under 60 MPa. Shrinkage change after SPS of MA'ed sample for 5 hrs was significant above $700^{\circ}C$ and gradually increased with increasing temperature up to $1100^{\circ}C$. X-ray diffraction result shows that the average grain size of ${\alpha}-Fe$ in ${\alpha}-Fe/Al_2O_3$ nanocomposite sintered at $1100^{\circ}C$ is in the range of 180 nm. It can be also seen that the coercivity (Hc) of SPS sample sintered at $1000^{\circ}C$ is still high value of 88 Oe, suggesting that the grain growth of magnetic ${\alpha}-Fe$ phase during SPS process tend to be suppressed.

Hexachlorobenzene Dechlorination Ability of Microbes from Canal and Estuary Sediments

  • Anotai, Jin;Voranisarakul, J.;Wantichapichat, W.;Chen, I.M.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.107-114
    • /
    • 2007
  • This study aimed to investigate the hexachlorobenzene (HCB) dechlorinating ability of sediment microbes collected from a natural canal receiving secondary effluents from an industrial estate and nearby factories. Nine sites along the stream and one in the estuary in the Gulf of Thailand into which the canal spills were specified and sampling for sediment and water. Preliminary analysis of the sediments showed that the first four sites nearest to the discharging location were contaminated by HCB within the range of 0.18 to 1.25 ppm. Apart from that, 1,3,5-trichlorobenzene which has never been commercially produced or used in any manufacturing processes except for the transformation from higher chlorinated benzene was also identified in the range of 0.16 to 0.24 ppm. This suggested a possibility of sporadically HCB contamination in this stream. Of more important, people in the community along this canal earn their living by coastal fishery; hence, posing a risk of spreading HCB and its less chlorinated congeners via food chain from caught marine creatures to human. As a result, there is an urgent need to understand the behavior of HCB dechlorination in this stream sediment which can lead to a clean-up action in the future. Serum bottles with sediment slurries (sediment to water ratio of 1:1 (v/v) and filtered to remove particles larger than 0.7 mm) from each site were inoculated with 2 mg/l of HCB, kept anaerobically in the dark at room temperature without any nourishment, and analyzed for HCB and its less-chlorinated congeners every 6 days. Total chemical oxygen demand, suspended solids, and volatile suspended solids were in the range of 21,492-73,584, 158,100-518,100 and 6,000-32,700 mg/l, respectively. It was found that all sediment slurries began to dechlorinate HCB in 12 to 30 days and the HCB was completely removed within 42 to 60 days or so. On the other hand, there was no HCB dechlorination occurred in the controlled set which was sterilized by autoclaving prior to the addition of HCB. This implies that the HCB transformation was solely due to microorganisms' activities. HCB was dechlorinated principally via pentachlolobenzene to 1,2,3,5-tetrachlorobenzene and terminated at 1,3,5-trichlorobenzene which is the major pathway as reported by many researchers. Dichlorobenzene has not been detected in any samples within the dechlorination period of 60 days. The results indicate that the microbial matrix in the sediment of this stream has an outstanding capability to dechlorinate HCB. Existing substrates and nutrients which mainly sorbed onto the solid phase and the typical temperature in Thailand were sufficient and suitable to promote the activities of these HCB-dechlorinating microbes.

  • PDF

Photostimulated Luminescence and Photoluminescence of SrCl2:Eu2+ Phosphors (SrCl2:Eu2+ 형광체의 광발광 및 광자극발광 특성)

  • Doh, Sih-Hong;Seo, Hyo-Jin;Kim, Young-Kook;Kim, Do-Sung;Kim, Sung-Hwan;Kim, Chan-Jung;Lee, Byung-Hwa;Kim, Wan;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.319-326
    • /
    • 2002
  • $SrCl_2:Eu^{2+}$ phosphors were prepared by the solid phase reaction method, and their photostimulated luminescence(PSL) and photoluminescence(PL) characteristics were investigated. The PSL and PL peak of the $SrCl_2:Eu^{2+}$ phosphors are due to the $5d{\rightarrow}4f$ transition of $Eu^{2+}$ ions in phosphors. The PSL and PL spectrum obtained by the 355nm excitation was observed in $380{\sim}440\;nm$ region with the peak at 407 nm. The dose response of the PSL phosphors were linear within $2.5\;mGy{\sim}200\;mGy$ of 100 kV X-ray. The fading of the phosphors at room temperature was approximately 60% after 20 min.

Evaluation of the Potential of Nitrogen Plasma to Cosmetics (질소 플라즈마의 화장품 가능성 평가)

  • Lee, So Min;Jung, So Young;Brito, Sofia;Heo, Hyojin;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Lee, Mi-Gi;Bin, Bum-Ho;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • Plasma refers to an ionized gas that is often referred to as "the fourth phase of matter", following solid, liquid, and gas. Plasma has traditionally been utilized for industrial applications such as welding and neon signs, but its promise in biomedical fields such as cancer treatment and dermatology has lately been recognized. Indeed, due to its beneficial effects in promoting collagen production, improving skin tone, and eliminating harmful bacteria in the skin, plasma treatment constitutes an important target for dermatological research. In this study, a plasma device for cosmetic manufacturing based on nitrogen, the main component of the atmosphere, was designed and assembled. Moreover, nitric oxide (NO) was selected since is easier to follow and evaluate than other nitrogen plasma active species, and its contents were measured to perform a quantitative and qualitative evaluation of plasma. First, an injection method, using different proximities labeled "sinking" and "non sinking" treatments, was performed to test the most efficient plasma treatment method. As a result, it was observed that the formulation obtained by a non sinking treatment was more effective. Furthermore, toner and ampoule were selected as cosmetics formulations, and the characteristics of the formulation and changes in the injected plasma state were observed. In both formulations, the successful injection of NO plasma was 2 times higher in toner formulation than ampoule formulation, and it gradually decreased with time, having dissipated after a week. It was confirmed that the nitrogen plasma used did not affect the stability of the toner and ampoule formulations at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃ and 50 ℃) conditions. The results of this study demonstrate the potential of plasma cosmetics and highlight the importance of securing the stability of the injected plasma.