• Title/Summary/Keyword: Rolling resistance

Search Result 233, Processing Time 0.03 seconds

Effects of Design Parameters of Lug on Tractive Efficiency and Rolling Resistance of Pneumatic Tires (러그의 설계인자(設計因子)가 공기(空氣)타이어의 견인효율(牽引効率) 및 구름저항(抵抗)에 미치는 영향(影響))

  • Chung, Woo Won;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.12-18
    • /
    • 1985
  • In order to investigate the effects of design parameters of lug on the tractive performance of pneumatic tires, soil bin tests were conducted for the test tires having different values of design parameters. The experimental results were presented in terms of lug space, lug angle and lug shape versus the tractive efficiency and rolling resistance of the test tires.

  • PDF

Mechanism Study of Sticking Occurring during Hot Rolling of Ferritic Stainless Steel (페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking 기구 연구)

  • Ha, Dae Jin;Sung, Hyo Kyung;Lee, Sunghak;Lee, Jong Seog;Lee, Yong Deuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.737-746
    • /
    • 2008
  • Mechanisms of sticking phenomena occurring during hot rolling of a modified STS 430J1L ferritic stainless steel have been investigated in this study by using a pilot-plant-scale rolling machine. As the rolling pass proceeds, the Fe-Cr oxide layer formed in a reheating furnace is destroyed, and the destroyed oxides penetrate into the rolled steel to form a thin oxide layer on the surface region. The sticking does not occur on the surface region containing oxides, whereas it occurs on the surface region without oxides by the separation of the rolled steel at high temperatures. This indicates that the resistance to sticking increases by the increase in the surface hardness when a considerable amount of oxides are formed on the surface region, and that the sticking can be evaluated by the volume fraction and distribution of oxides formed on the surface region. The lubrication and the increase of the rolling speed and rolling temperature beneficially affect to the resistance to sticking because they accelerate the formation of oxides on the steel surface region. In order to prevent or minimize the sticking, thus, it is suggested to increase the thickness of the oxide layer formed in the reheating furnace and to homogeneously distribute oxides along the surface region by controlling the hot-rolling process.

High-Accuracy Coastdown Test Method by Distance-Time Measurement: I. Theoretical Background and Discussions on Accuracy Improvements (거리·시간 측정에 의한 고정도 타행시험법 : I. 관련이론 및 정밀도 향상방법 고찰)

  • Hur, N.;Ahn, I.K.;Petrushov, V.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.51-61
    • /
    • 1995
  • A coast down test mothod has been used to determine the resistance forces on running vehicle due to the aerodynamic drag, rolling resistance and driveline resistance. Most of the tests, however, are based on the Velocity-Time measurements, which require a sophisticated velocity measuring device and contain much error by nature. In the present study a coast down test method based on Distance-Time measurements is introduced, which contains the original idea of Russian scientist Prof. Petrushov along with the suggestions for improvement of the accuracy.

  • PDF

Preparation of Silica-Filled SBR Compounds with Low Rolling Resistance by Wet Masterbatch

  • Yang, Jae-Kyoung;Park, Wonhyeong;Ryu, Changseok;Kim, Sun Jung;Kim, Doil;Seo, Gon
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.26-39
    • /
    • 2020
  • The physical properties of silica-filled SBR compounds (WSBR) prepared using silica-SBR wet masterbatches (WMB) were systematically investigated to understand the effect of the surface treatment of silica on the reinforcement performance of SBR. Treatment of silica with bis(triethoxysilylpropyl)tetrasulfide (TESPT) in the liquid phase, followed by mixing with an SBR solution and recovery by water stripping, easily produced silica-SBR WMB. However, insufficient surface treatment in terms of the amount and stability of the incorporated TESPT led to considerable silica loss and inevitable TESPT elution. Pretreatment of silica in the gas phase with TESPT and another organic material that enabled the formation of organic networks among the silica particles on the surface provided hydrophobated silica, which could be used to produce silica-SBR WMB, in high yields of above 99%. The amount and type of organic material incorporated into silica greatly influenced the cure characteristics, processability, and tensile and dynamic properties of the WSBR compounds. The TESPT and organic material stably incorporated into silica increased their viscosity, while the organic networks dispersed on the silica surface were highly beneficial for reducing their rolling resistance. Excessive dosing of TESTP induced low viscosity and a high modulus. The presence of connection bonds formed by the reaction of glycidyloxy groups with amine groups on the silica surface resulted in physical entanglement of the rubber chains with the bonds in the WSBR compounds, leading to low rolling resistance without sacrificing the mechanical properties. Mixing of the hydrophobated silica with a rubber solution in the liquid phase improved the silica dispersion of WSBR compounds, as confirmed by their low Payne effect, and preservation of the low modulus enhanced the degree of entanglement.

A Study on the Comparison of the Rolling and Resistance Performance for the Stepped-Hull with attached a Stern-body by using Sea Model-Test (실 해상모형시험을 이용한 선미 보조동체 장착 Stepped hull 선형의 횡동요 및 저항특성 비교 연구)

  • Jo, Hyo-Jae;Sohn, Kyoung-Ho;Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.813-818
    • /
    • 2007
  • There are the C.W.C and Towing Tank to the model-test equipments of the boat. A model testing of the high speed boat have a difficult in the performance verification because of very a small the scale-ratio of the ship-model and restricted by flow-velocity of the C.W.C and X-carriage velocity of the T.T. In general, the stepped hull boat is a high of fuel-efficiency because of the resistance reduction by a small wetted surface-area in correspond without stepped-hull boat. But It have a tendency to be bad the rolling performance by reduced stern wetted-area In this paper, the high speed stepped planning-boats with & without attached a stern body were performed to compare the effect of resistance and rolling performance by using sea model-test method.

High Temperature Deformation Resistance of Stainless Steels (스테인레스강의 열간변형저항)

  • 김영환;정병완
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.366-372
    • /
    • 1999
  • The deformation behavior of commercial stainless steels under hot rolling conditions was investigated by means of hot compression tests performed in the temperature range 800$^{\circ}C$ to 1200$^{\circ}C$. The measured flow stress-strain curves were analyzed by using a simple flow stress model. It was found that the reference strength of stainless steels are much higher than that of carbon steel and that nitrogen and molybdenum alloying greatly increases flow stress of austenitic stainless steel. Ferritic and duplex stainless steel showed comparatively low flow stresses. The flow stress model, which correlates the flow stress with temperature and strain rate, was applied to predict roll forces during hot-plate rolling of stainless steels.

  • PDF

Effect of cold rolling condition on sagging properties of Al 4343/3N03/4343 three-layer clad materials (Al 4343/3N03/4343 합금 3층 clad 재의 sagging 특성에 미치는 냉간압연조건의 영향)

  • 김목순
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.157-160
    • /
    • 1999
  • Aluminum 4343(filler thickness ; 10${\mu}{\textrm}{m}$/Al 3N03(core 80${\mu}{\textrm}{m}$)/Al 4343(filler 10${\mu}{\textrm}{m}$) clad sheet which is recently developed as brazing sheet materials for automotive condensers was fabricated by castinglongrightarrowhot rollinglongrightarrowcold rollinglongrightarrowintermediate annealing(IA)longrightarrowfinal cold rolling(CR). and the effect of IA/CR conditions on microstructure and sagging resistance were investigated the sheet which were fabricated by optimum conditions (IA'ed at 42$0^{\circ}C$ followed by CR'ed to 20~45%) showed good sagging resistance because the core obtained a coarsely recrystallized grain structure during brazing and consequently inhibited filled alloy penetration into the core.

  • PDF

An Experimental Study on Hull Form Development and Anti-Rolling Tank Performance of G/T 360ton Class Fishery Patrol Ship (총톤수 360톤급 어업지도선의 선형개선 및 횡요감소장치 성능에 관한 실험적 연구)

  • Lee, Kwi-Joo;Joa, Soon-Won;Kim, Kyoung-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.245-250
    • /
    • 2003
  • Hull form development and Anti-rolling tank of G/T 360ton class fishery patrol ship was carried out in the CWC at Chosun university, cooperatively with WJFEL(The West Japan Fluid Engineering Laboratory). Same size of 15 knots class fishery patrol ship was selected as a parent form(Model number: CU-015), and modified fore and after body hull form under the slightly lengthened to be suitable for the operation at 20 knots. This paper investigated for a rolling performance and an effective using method when fishery patrol ship was equipped with anti-rolling tank. On several occasions of rolling test was made reference to design data of a similar ship. Although the hull form was highly constrained in being limited to modification of a parent hull form, significant wave resistance improvement was made.

  • PDF

Analysis of Dynamic Performance of Model Tranis for Their Drive Train Design (모형기차의 구동부 설계를 위한 동역학적 성능해석)

  • Kim, Suc-Tae;Yoon, Soon-Hyung;Tak, Tae-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2001
  • Model trains should have very similar motion characteristics to real trains in order to provide realistic feeling to their operators. Main purpose of dynamic analysis of model trains is to predict velocities in straight and circular tracks and estimate stopping distance after power shut off. Equations of motion for a model train are derived that relates velocity, traction, rolling resistance, and pulling force. Also, energy equations for calculating stopping distance after power shut off are derived. Experiments with model trains are preformed to measure velocity, rolling resistance, slip, and stopping distance. The results are compared with the prediction based on the equations of motion, and they showed good agreement. It can be concluded that the prediction is more accurate when the slip between wheel and rail is accounted for. The analysis procedures can be applied to determining various design factors in model trains.

  • PDF

The Effect of The Heat Treatment Condition and the Oxidation Process on the Microstructure of Ag-CdO Contact Materials (Ag-CdO계 전기접점재료의 미세조직에 미치는 열처리 조건과 산화 공정의 영향)

  • Kwon, Gi-Bong;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.226-232
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO material has a good wear resistance and stable contact resistance. In order to establish optimizing heat treatment condition, rolling temperature and oxidation process, we studied the microstructure of Ag-CdO material with various conditions. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. In this study, we obtained the optimizing heat treatment condition was $700^{\circ}C$ for 15 min. and the optimizing rolling temperature was $730^{\circ}C$. In investigation of the microstructure of oxidized material, coarse oxide and depleted oxidation layer existed. The hardness was average Hv 70. When we used Post-oxidation, oxides were finer than prior process and depleted oxidation layer did not exist. The hardness of Post-oxidation material was average Hv 80. And the optimizing rolling temperature was $800^{\circ}C$.