• 제목/요약/키워드: Rolling Times

검색결과 187건 처리시간 0.026초

고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측 (Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling)

  • 송길호;정제숙
    • 대한기계학회논문집A
    • /
    • 제37권2호
    • /
    • pp.271-277
    • /
    • 2013
  • 냉간압연 및 소둔공정에서의 조질압연 과정은 강종별로 적정 연신율을 부여함으로서 프레스 가공시 항복점 연신 현상을 제거해주는 중요한 공정이다. 적정 연신율 확보를 위해서는 강종별, 사이즈별 정확한 압연하중 예측이 필수이다. 열간 및 냉간압연과는 달리 조질압연에서는 2%이내의 연신율을 부과하는 공정이므로 압연하중 작용 시 롤 바이트 내 에서의 롤의 탄성변형 거동이 복잡하여 정확한 압연하중을 예측하기가 어려워 예측모델이 정립되어 있지 않다. 그럼에도 불구하고 최근 인장강도 590MPa 급 이상의 자동차용 고강도강 개발이 가속화 됨에 따라 조질압연시 정확한 압연하중의 예측은 더욱더 중요하게 되었다. 따라서 본 연구에서는 조질 압연 시 롤 바이트 내에서 롤의 변형거동이 유사하다고 알려져 있는 호일(foil)압연 이론 식을 이용해 조질 압연 시 전체 생산 강종을 대상으로 압연하중 예측 가능성에 대해 검토하였다. 그 결과 인장강도 350MPa 이상 980MPa 이하의 강종에 대해서는 non circular model 이 circular 모델보다 압연하중 예측 정도가 우수하며, 이 영역에서 압연하중 예측 모델로의 적용이 가능함을 확인하였다.

분말시스압연법에 의한 CNT 강화 Al기 복합재료의 제조 및 평가 (Fabrication and Evaluation of Carbon Nanotube Reinforced Al Matrix Composite by a Powder-in-sheath Rolling Method)

  • 이성희;홍동민
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.50-54
    • /
    • 2014
  • A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled in the tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhibited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; it decreased from $24{\mu}m$ to $0.9{\mu}m$ by the addition of only 1 volCNT. The average hardness of the composites increased by approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concluded that the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

예지고, 시간경과, 롤링과 이슬제거가 골프 코스 퍼팅 그린의 그린 스피드에 미치는 영향 (The effect of mowing height, time lapse, rolling, and dew removal on green speed of putting green in Golf Course)

  • 심경구;이상재;허근영
    • 아시안잔디학회지
    • /
    • 제13권3호
    • /
    • pp.139-146
    • /
    • 1999
  • This studies was carried out to estimate the influence of mowing height, time lapse, rolling, and dew removal on green speed of putting green in Lake Side C. C. on 29, 30 Jun. 1998. The results were as follows. As mowing height increased, green speed tended to be decreased. After mowing, green speed tended to be decreased over the time, and appeared to be decrease significantly on the next day[Y=3.206-0.127.X1-1.41$\times$10-2.X4(Y=green speed, X1=mowing height, X4=time lapse)]. This suggests that the frequency of mowing must be increased to maintain the green speed. But, frequent mowing cause the turfgrass of putting green to be stressed. Rolling tended to increase green speed[Y=3.555-0.202.X1+0.111.X2(Y=green speed, X1=mowing height, X2=rolling)]. Thus, rollers is thought to be an tool used to increase green speed and rolling is expected to be able to decrease turfgrass stress while maintaining the performance level of the putting green. Dew removal appeared to increase green speed significantly[Y=2.499-0.125.X1+0.366.X3(Y=green speed, X1=mowing height, X3=dew removal)]. Thus, dew removal is expected to maintain the green speed in the morning.

  • PDF

크로스 압연에 의한 Al-Mg-Si-Cu 합금 판재의 소성변형비의 향상 (Improvement of R-value in Al-Mg-Si-Cu Alloy Sheets by Cross Rolling)

  • 이광진;전재열;우기도
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.488-492
    • /
    • 2011
  • Heat-treatable Al-Mg-Si-Cu alloy sheets, which are expected to have a growing demand, were fabricated by Cross rolling to improve their formability. The mechanical properties and texture of the sheets after the final annealing process were investigated by a tensile test, EBSD and XRD analysis. The grain size of the cross-rolled sheets was remarkably decreased compared to conventional rolled sheets, and the R-value of the cross-rolled sheets was notably increased by about one and a half times that of the conventional rolled sheet. Cube{001}<100> and cubic system orientations were strongly developed in conventional rolled sheets. However, randomized textures were formed in the cross-rolled sheets without specific texture. It is thought that much shear deformation was induced during the cross rolling. The results show that the cross rolling method is effective for improving the R-value of aluminum alloys sheets and their grain refinement. As a result, it is considered that cross rolling is effective for improving formability.

Fe-10Mn-3.5Si 합금의 초소성에 미치는 반복 냉연 및 소둔의 영향 (Effect of Repetitive Cold Rolling and Annealing on the Superplasticity of Fe-10Mn-3.5Si Alloy)

  • 정현빈;최석원;이영국
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.211-219
    • /
    • 2022
  • It is known that superplastic materials with ultrafine grains have high elongation mainly due to grain boundary sliding. Therefore, in the present study we examined the influence of grain refinement, caused by a repetitive cold rolling and annealing process, on both superplastic elongation and superplastic deformation mechanism. The cold rolling and annealing process was repetitively applied up to 4 times using Fe-10Mn-3.5Si alloy. High-temperature tensile tests were conducted at 763 K with an initial strain rate of 1 × 10-3 s-1 using the specimens. The superplastic elongation increased with the number of the repetitive cold rolling and annealing process; in particular, the 4 cycled specimen exhibited the highest elongation of 372%. The primary deformation mechanism of all specimens was grain boundary sliding between recrystallized α-ferrite and reverted γ-austenite grains. The main reason for the increase in elongation with the number of the repetitive cold rolling and annealing process was the increase in fractions of fine recrystallized α-ferrite and reverted γ-austenite grains, which undergo grain boundary sliding.

인발성형 시스템 고도화를 위한 특수합금 육각봉의 압연특성 비교 해석 연구 (Comparative Study on Rolling Characteristics of Hexagonal Bar with Special Alloy for Advancing Drawing System)

  • 이영식;양영준
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.96-102
    • /
    • 2021
  • Hexagonal bolt, nut, fittings, and high-pressure valves with special alloy play an important role in many industrial products. Numerical analysis was conducted to obtain data for designing a new drawing system. This study aims to predict the rolling force of the new drawing system compared to that of the established drawing system. The rolling force of the new drawing system was predicted using numerical analysis by assuming that it is in proportion to deformation. The rolling forces of Mo, Ti, and W were approximately 1.4, 0.5, and 2.5 times those of SUS. Because the values of ultimate strength of special alloys were more close to numerical analysis, the values of ultimate strength could be used to predict the rolling force of the new drawing system without numerical analysis in field.

특성별 그리이스의 수명과 열화특성 연구 (Grease Life and Degradation Characteristics in Rolling Bearing Lubrication)

  • 김상근;박창남;한종대
    • Tribology and Lubricants
    • /
    • 제19권5호
    • /
    • pp.280-284
    • /
    • 2003
  • High performance characteristics are required for rolling bearings and the various functions of bearing are greatly influenced by grease. Recently, higher performance is being demanded of rolling bearing greases for bearing lubrication. Four special greases with different composition such as lithium soap/ester oil, urea/ester oil, urea/ether oil and PTFE/fluorine oil were synthesized to compare the performance of these greases with that of the conventional lithium soap/mineral oil grease. The grease properties were investigated using a series of typical grease testing methods and grease life test. After the life test, the greases were charaterized by FTIR analysis and a microscope. And the iron amount in the greases was analyzed by AAS after ashing. The composition and manufacturing process determined the grease performance. The grease with a base oil of synthetic oil showed higher performance and the urea/ester oil and PTFE/fluorine oil showed about three times longer life as compared with conventional lithium grease.

조질압연 가공시 작업롤조도와 판면조도 변화에 관한 연구 (A Study on the Surface Roughness Variation of Work Roll and Strip at the Temper Rolling)

  • 전언찬;김순경
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.408-417
    • /
    • 1995
  • A study on the surface roughness variation of work roll and strip at the temper rolling was performed. The results were obtained with changes according to the surface roughness of work roll and method to make the peak count on the roll in the temper rolling, and factors to affect to the work roll surface in actual rolling machine (ie. Temper mill). The results suggests that the electro-discharge textured roll has mere uniform roughness distribution than shot blasted roll and its life time is two times longer than shot blasted because it has more sine wave roughness, and it is possible to control the Rmax. In shot blasting method, Surface roughness is related to the impeller speed, But it can't control the peak count.

특성별 그리이스의 수명과 열화특성 연구 (Grease Life and Degradation Characteristics in Rolling Bearing Lubrication)

  • 김상근;박창남;한종대
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.179-185
    • /
    • 2001
  • High performance characteristics are required for rolling bearings and the various functions of bearing are greatly influenced by grease. Recently, higher performance is being demanded of rolling bearing greases for bearing lubrication. Four special greases with different composition such as lithium soap/ester oil, urea/ester oil, urea/ether oil and PTFE/fluorine oil were synthesized to compare the performance of these greases with that of the conventional lithium soap/mineral oil grease. The grease properties were investigated using a series of typical grease testing methods and grease life test. After the life test, the greases were charaterized by FTIR analysis and a microscope. And the iron amount in the greases was analyzed by AAS after ashing. The composition and manufacturing process determined the grease performance. The grease with a base oil of synthetic oil showed higher performance and the urea/ester oil and PTFE/fluorine oil showed about three times longer life as compared with conventional lithium grease.

  • PDF

도시철도차량의 연결기 종류별 노후화가 승차감에 미치는 영향 연구 (A Study on Ride Quality Due to Deterioration Effects for the Coupler Types of Urban EMUs)

  • 김준우;조병진;한은광;구정서
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.117-122
    • /
    • 2017
  • In this study, we studied the ride quality considering the deterioration effects of the three type couplers (single, double, and ring types) for EMUs. In order to know the impact occurred when an urban transit vehicle is under breaking, we tested the conditions of the service brake and the emergency brake. Normal coupler models without any slack showed similar dynamic performance results under all breaking conditions. But if the couplers become old, the initial pre-stresses are removed because of permanent compressive deformation in rubber. For three types of the old coupler models without the initial pre-stress, we evaluated dynamic performances of each type. As the results, the maximum and average acceleration levels of the double type and the ring type were similarly low in all conditions. But the accelerations of the single type coupler was high when compared to those of the double and ring types. In addition, Jerk value of the single type model associated with ride quality was high up to 15 times to the ring type in condition of the service braking in empty vehicle weight. Jerk value of the double type model was high up to 6 times to the ring type.