DOI QR코드

DOI QR Code

Fabrication and Evaluation of Carbon Nanotube Reinforced Al Matrix Composite by a Powder-in-sheath Rolling Method

분말시스압연법에 의한 CNT 강화 Al기 복합재료의 제조 및 평가

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Hong, Dongmin (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 이성희 (국립목포대학교 신소재공학과) ;
  • 홍동민 (국립목포대학교 신소재공학과)
  • Received : 2014.02.07
  • Accepted : 2014.02.12
  • Published : 2014.02.28

Abstract

A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled in the tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhibited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; it decreased from $24{\mu}m$ to $0.9{\mu}m$ by the addition of only 1 volCNT. The average hardness of the composites increased by approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concluded that the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

Keywords

References

  1. I. J. Palmear: Light Alloys, Arnold, Butterworth-heinemann Press, London, 325 (1995).
  2. Y. Genma, Y. Tsunekawa, M. Okumiya and N. Mohri: Materials Transactions, JIM, 38 (1997) 232. https://doi.org/10.2320/matertrans1989.38.232
  3. K. Ohori, H. Watanabe and Y. Takeuchi: Mater. Sci. & Tech., 3 (1987) 57. https://doi.org/10.1179/mst.1987.3.1.57
  4. N. C. Kothari: Powder Metall. Int., 18 (1986) 321.
  5. S. H. Hong and K. H. Chung: Mater. Sci. Eng., A194 (1995) 165. https://doi.org/10.1016/0921-5093(94)09676-7
  6. W. F. Wang: Powder Metall., 38 (1995) 289. https://doi.org/10.1179/pom.1995.38.4.289
  7. S. H. Lee and C. H. Lee: J. Kor. Powd. Met. Inst., 10 (2003) 103. https://doi.org/10.4150/KPMI.2003.10.2.103
  8. S. H. Lee and C. H. Lee: J. Kor. Powd. Met. Inst., 11 (2004) 259. https://doi.org/10.4150/KPMI.2004.11.3.259
  9. D. M. Hong, W. J. Kim and S. H. Lee: J. Kor. Powd. Met. Inst., 23 (2013) 11.
  10. S. H. Joo and H. S. Kim: Trans. Mater. Process., 19 (2010) 423 (Korea). https://doi.org/10.5228/KSTP.2010.19.7.423
  11. A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka: Com. Sci. Tech., 70 (2010) 2237. https://doi.org/10.1016/j.compscitech.2010.05.004
  12. H. J. Choi, D. H. Bae: Mater. Sci. Eng., A528 (2011) 2412. https://doi.org/10.1016/j.msea.2010.11.090
  13. J. K. Lim, K. H. Choe, S. S. Kim and G. S. Cho: Kor. J. Met. Mater., 51 (2012) 317.
  14. A. M. K. Esawi, K. Morsi, A. Sayed, A. Abdel Gawad and P. Borah: Mater. Sci. Eng., A508 (2009) 167. https://doi.org/10.1016/j.msea.2009.01.002

Cited by

  1. Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.343
  2. Experimental Study On Fracture Property Of Tapered Double Cantilever Beam Specimen With Aluminum Foam vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0153
  3. Experimental Study On Fracture Property Of Double Cantilever Beam Specimen With Aluminum Foam vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0087